Computer Graphics

- Camera Transformation -

Stefan Lemme

Overview

Last time

- Affine space (A, V, \bigoplus)
- Projective space $P^n(\mathbb{R})$
 - set of lines through origin

•
$$[x, y, z, w] = [\lambda x, \lambda y, \lambda z, \lambda w] = \left[\frac{x}{w}, \frac{y}{w}, \frac{z}{w}, 1\right]$$

- Normalized homogeneous coordinates
 - Points (*x*, *y*, *z*, 1)
 - Vectors (*x*, *y*, *z*, 0)
- Affine transformations

a_{xx}	a_{xy}	a_{xz}	b_x
a_{yx}	a_{yy}	a_{yz}	b_y
a_{zx}	a_{zy}	a_{zz}	b_z
L 0	0	0	1 J

- Basic transformations
 - Translation, Scaling, Reflection, Shearing, Rotation
- Transforming normals
 - $N = (M^{-1})^T$

Overview

Today

- How to use affine transformations
 - Coordinate spaces
 - Hierarchical structures
- Camera transformations
 - Camera specification
 - Perspective transformation

- Local (object) coordinate system (3D)
 - Object vertex positions
 - Can be hierarchically nested in each other (scene graph, transf. stack)
- World (global) coordinate system (3D)
 - Scene composition and object placement
 - Rigid objects: constant translation, rotation per object, (scaling)
 - Animated objects: time-varying transformation in world-space
 - Illumination can be computed in this space

Hierarchical Coordinate Systems

Hierarchy of transformations

Hierarchical Coordinate Systems

Used in Scene Graphs

- Group objects hierarchically
- Local coordinate system is relative to parent coordinate system
- Apply transformation to the parent to change the whole sub-tree (or sub-graph)

Ray-tracing Transformed Objects

- Ray (world coordinates)
- *T* set of triangles (local coordinates)
- *M* transformation matrix (local-to-world)

Ray-tracing Transformed Objects

Option 1: transform the triangles

Ray-tracing Transformed Objects

Option 2: transform the ray

Ray-tracing through a Hierarchy

Instancing

- *T* set of triangles
 - local coordinates
 - memory
- M_i transformation matrices

 M_1

- local-to-world
- Multiple rendered objects
 - Correct lighting, shadows, etc...
 - Never "materialized" in memory

 M_2

 M_3

 M_4

- Local (object) coordinate system (3D)
- World (global) coordinate system (3D)
- Camera/view/eye coordinate system (3D)
 - Coordinates relative to camera position & direction
 - · Camera itself specified relative to world space
 - Illumination can also be done in that space
- Normalized device coordinate system (2.5D)
 - After perspective transformation, rectilinear, in $[0,1]^3$
 - Normalization to view frustum, rasterization, and depth buffer
 - Shading executed here (interpolation of color across triangle)
- Window/screen (raster) coordinate system (2D)
 - 2D transformation to place image in window on the screen

Goal: Transform objects from local to screen

typical for rasterization

Viewing Transformation

VUP

view

viewing

transformation

world

VPN

Ζ

Ν

PR

Ζ

• External (extrinsic) camera parameters

- Center of projection
 - projection reference point (PRP)
- Optical axis: view-plane normal (VPN)
- View up vector (VUP)

Needed Transformations

- Translation T(-PRP)
- Rotation $R(\vec{u}, \phi)$:
 - $VPN \parallel -\vec{z}$
 - $VUP \in \text{Span}(\vec{y}, \vec{z})$

Viewing Transformation

- Internal (intrinsic) camera parameters
 - Screen window
 - center of the window (CW)
 - width, height
 - Focal length f
 - projection plane distance along $-\vec{z}$

– FOV

- Instead of f
- CW in the center
- vertical/horizontal
- aspect ratio

Needed Transformations

- Shear to move CW to center

$$H_{xy}\left(-\frac{CW_x}{f}, -\frac{CW_y}{f}\right) = \begin{bmatrix} 1 & 0 & -\frac{CW_x}{f} & 0\\ 0 & 1 & -\frac{CW_y}{f} & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

x x z camera

W

Viewing Transformation

Perspective transformation

 From canonical perspective viewing frustum (= cone at origin around -Z-axis) to regular box [-1 .. 1]² x [0 .. 1]

Mapping of X and Y

- Lines through the origin are mapped to lines parallel to the Z-axis
 - x'= x/-z and y'= y/-z (coordinate given by slope with respect to z!)
- Do not change X and Y additively (first two rows stay the same)
- Set W to -z so we divide when converting back to 3D

 Note: Perspective projection = perspective transformation + parallel projection

• Computation of the coefficients A, B, C, D

- No shear of Z with respect to X and Y
 - A = B = 0
- Mapping of two known points
 - Computation of the two remaining parameters C and D
 - n = near / far (due to previous scaling by 1/far)
 - Following mapping must hold

- $(0,0,-1,1)^T = P(0,0,-1,1)^T$ and (0,0,0,1) = P(0,0,-n,1)

Resulting Projective transformation

	/1	0	0	0 \	
-	0	1	0	0	
-P =	0	0	$\frac{1}{1-n}$	$\frac{n}{1-n}$	
	\setminus_0	0	-1^{1-n}	$\binom{1-n}{0}$	

- Transform Z non-linearly (in 3D)

•
$$z' = -\frac{z+n}{z(1-n)}$$

Projection to Screen

Parallel Projection to 2D

- Parallel projection to [-1 .. 1]²
 - Formally scaling in Z with factor 0
 - Typically maintains Z in [0,1] for depth buffering
 - As a vertex attribute (see OpenGL later)
- Transformation from [-1 .. 1]² to NDC ([0 .. 1]²)
 - Scaling (by 1/2 in X and Y) and translation (by (1/2,1/2))

Projection matrix for combined transformation

Delivers normalized device coordinates

•
$$P_{parallel} = \begin{pmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 \text{ or } 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Viewport Transformation

Scaling and translation in 2D

- Scaling matrix to map to entire window on screen
 - $S_{raster}(xres, yres)$
 - No distortion if aspects ration have been handled correctly earlier
 - Sometime need to reverse direction of y
 - Some formats have origin at bottom left, some at top left
 - Needs additional translation
- Positioning on the screen
 - Translation *T*_{raster}(*xpos*, *ypos*)
 - May be different depending on raster coordinate system
 - Origin at upper left or lower left

Orthographic Projection

- Step 2a: Translation (orthographic)
 - Bring near clipping plane into the origin
- Step 2b: Scaling to regular box [-1 .. 1]² x [0 .. -1]
- Mapping of X and Y

$$-P_{o} = S_{xyz}T_{near} = \begin{pmatrix} \frac{2}{width} & 0 & 0 & 0\\ 0 & \frac{2}{height} & 0 & 0\\ 0 & 0 & \frac{1}{far-near} & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & near\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Camera Transformation

Complete transformation (combination of matrices)

- Perspective Projection
 - $T_{camera} = T_{raster} S_{raster} P_{parallel} P_{persp} S_{far} S_{xy} H_{xy} R T$
- Orthographic Projection
 - $T_{camera} = T_{raster} S_{raster} P_{parallel} S_{xyz} T_{near} H_{xy} R T$

Other representations

- Other literature uses different conventions
 - Different camera parameters as input
 - Different canonical viewing frustum
 - Different normalized coordinates
 - [-1 .. 1]³ versus [0 ..1]³ versus ...

 \rightarrow Results in different transformation matrices – so be careful !!!

Perspective vs. Orthographic

- Parallel lines remain parallel
- Useful for modeling => feature alignment

- Normalized (projection) coordinates
 - 3D: normalized [-1 .. 1]³ or [-1 .. 1]² x [0 .. -1]
 - Clipping
 - Parallel projection
- Normalized 2D device coordinates [-1 .. 1]²
 - Translation and scaling

Normalized 2D device coordinates [0 .. 1]²

- Where is the origin?
 - RenderMan, X11: upper left
 - OpenGL: lower left
- Viewport transformation
 - Adjustment of aspect ratio
 - Position in raster coordinates
- Raster coordinates
 - 2D: units in pixels [0 .. xres-1, 0 .. yres-1]

OpenGL

- Traditional OpenGL pipeline
 - Hierarchical modeling
 - Modelview matrix stack
 - Projection matrix stack
 - Each stack can be independently pushed/popped
 - Matrices can be applied/multiplied to top stack element

• Today

- Arbitrary matrices as attributes to vertex shaders that apply them as they wish (later)
- All matrix stack handling must now be done by application

OpenGL

Traditional ModelView matrix

- Modeling transformations AND viewing transformation
- No explicit world coordinates

Traditional Perspective transformation

- Simple specification
 - glFrustum(left, right, bottom, top, near, far)
 - glOrtho(left, right, bottom, top, near, far)

Modern OpenGL

- Transformation provided by app, applied by vertex shader
- Vertex or Geometry shader must output clip space vertices
 - Clip space: Just before perspective divide (by w)

Viewport transformation

- glViewport(x, y, width, height)
- Now can even have multiple viewports
 - glViewportIndexed(idx, x, y, width, height)
- Controlling the depth range (after Perspective transformation)
 - glDepthRangeIndexed(idx, near, far)

Pinhole Camera Model

 $\frac{r}{g} = \frac{x}{f} \Rightarrow x = \frac{fr}{g}$

g

Infinitesimally small pinhole

- \Rightarrow Theoretical (non-physical) model
- \Rightarrow Sharp image everywhere
- \Rightarrow Infinite depth of field
- \Rightarrow Infinitely dark image in reality
- \Rightarrow Diffraction effects in reality

Thin Lens Model

Object front at distance *g*-*r* is in focus at

$$b' = \frac{f(g-r)}{(g-r) - f}$$

Thin Lens Model: Depth of Field

DOF: Defined radius r, such that CoC smaller than Δs

on pixel size and CoC

Depth of field (DOF)
$$r < \frac{g\Delta s(g-f)}{af + \Delta s(g-f)} \Rightarrow r \sim$$

The smaller the aperture, the larger the depth of field

а

Ignored Effects

A lot of things that we ignored with our pinhole camera model

- Depth-of-field
- Lens distortion
- Aberrations
- Vignetting
- Flare

Physical limitations of mapping function

- Go beyond physical limitations
- Use polar parameterization
 - $r = sqrt(sscx^2 + sscy^2)$
 - $\phi = atan2(sscy, sscx)$

Wrap onto a sphere

- Equi-angular mapping
- $\theta = r * fov / 2$ (inclination angle)
- $\phi = \phi$

Convert to Cartesian coordinates

- $-x = \sin \theta \cos \phi$
- $y = \sin \theta \sin \phi$
- $-z = \cos \theta$

• Distortion: straight lines become curved

Capture Environment

Little Planet

Environment Camera

- Go way beyond physical limitations
- Use spherical parameterization
 - Equi-angular mapping
 - $\theta = sscy * fovy / 2$ (elevation angle)
 - $\phi = sscx * fovx / 2$

Convert to Cartesian coordinates

- $-x = \cos \theta \cos \phi$
- $y = \cos \theta \sin \phi$
- $-z = \sin \theta$

Environment Camera

- Vertical straight lines remain straight
- Horizontal straight lines become curved

