Computer Graphics

- Camera Transformation -

Stefan Lemme

Overview

- Last time
- Affine space (A, V, \oplus)
- Projective space $\boldsymbol{P}^{\boldsymbol{n}}(\mathbb{R})$
- set of lines through origin
- $[x, y, z, w]=[\lambda x, \lambda y, \lambda z, \lambda w]=\left[\frac{x}{w}, \frac{y}{w}, \frac{z}{w}, 1\right]$
- Normalized homogeneous coordinates
- Points $(x, y, z, 1)$
- Vectors $(x, y, z, 0)$
- Affine transformations

$$
\left[\begin{array}{cccc}
a_{x x} & a_{x y} & a_{x z} & b_{x} \\
a_{y x} & a_{y y} & a_{y z} & b_{y} \\
a_{z x} & a_{z y} & a_{z z} & b_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Basic transformations
- Translation, Scaling, Reflection, Shearing, Rotation
- Transforming normals
- $N=\left(M^{-1}\right)^{T}$

Overview

- Today
- How to use affine transformations
- Coordinate spaces
- Hierarchical structures
- Camera transformations
- Camera specification
- Perspective transformation

Coordinate Systems

- Local (object) coordinate system (3D)
- Object vertex positions
- Can be hierarchically nested in each other (scene graph, transf. stack)
- World (global) coordinate system (3D)
- Scene composition and object placement
- Rigid objects: constant translation, rotation per object, (scaling)
- Animated objects: time-varying transformation in world-space
- Illumination can be computed in this space

Hierarchical Coordinate Systems

- Hierarchy of transformations

```
T_root //position of the character in world
    T_ShoulderR
        T_ShoulderRJoint
        T_UpperArmR
            T_ElbowRJoint
                    T_LowerArmR
                        T_WristRJoint
                            ...
    T_Shou7derL
        T_ShoulderLJoint
        T_UpperArmL
            T_ElbowLJoint
                    T_LowerArmL
//Right shoulder position
//Shoulder rotation <== User
//Elbow position
//Elbow rotation <== User
//Wrist position
//Wrist rotation <== User
//Hand and fingers...
//Left shoulder position
//shoulder rotation <== User
//Elbow position
//Elbow rotation <== User
//Wrist position
```


Hierarchical Coordinate Systems

- Used in Scene Graphs

- Group objects hierarchically
- Local coordinate system is relative to parent coordinate system
- Apply transformation to the parent to change the whole sub-tree (or sub-graph)

Ray-tracing Transformed Objects

- Ray (world coordinates)
- T - set of triangles (local coordinates)
- M - transformation matrix (local-to-world)

Ray-tracing Transformed Objects

- Option 1: transform the triangles

Ray-tracing Transformed Objects

- Option 2: transform the ray

Ray-tracing through a Hierarchy

Instancing

- T - set of triangles
- local coordinates
- memory
- M_{i} - transformation matrices
- local-to-world
- Multiple rendered objects
- Correct lighting, shadows, etc...

Coordinate Systems

- Local (object) coordinate system (3D)
- World (global) coordinate system (3D)
- Camera/view/eye coordinate system (3D)
- Coordinates relative to camera position \& direction
- Camera itself specified relative to world space
- Illumination can also be done in that space
- Normalized device coordinate system (2.5D)
- After perspective transformation, rectilinear, in $[0,1]^{3}$
- Normalization to view frustum, rasterization, and depth buffer
- Shading executed here (interpolation of color across triangle)
- Window/screen (raster) coordinate system (2D)
- 2D transformation to place image in window on the screen

Goal: Transform objects from local to screen

- typical for rasterization

Coordinate Systems

Coordinate Systems

perspective projection

Viewing Transformation

- External (extrinsic) camera parameters
- Center of projection
- projection reference point (PRP)
- Optical axis: view-plane normal (VPN)
- View up vector (VUP)
- Needed Transformations
- Translation $T(-P R P)$
- Rotation $R(\vec{u}, \phi)$:
- VPN \| $-\vec{Z}$
- $V U P \in \operatorname{Span}(\vec{y}, \vec{z})$

Viewing Transformation

- Internal (intrinsic) camera parameters

- Screen window
- center of the window (CW)
- width, height
- Focal length f
- projection plane distance along $-\vec{Z}$
- FOV
- Instead of f
- CW in the center
- vertical/horizontal
- aspect ratio
- Needed Transformations
- Shear to move CW to center
$-\mathrm{H}_{x y}\left(-\frac{C W_{x}}{f},-\frac{C W_{y}}{f}\right)=\left[\begin{array}{cccc}1 & 0 & -\frac{C W_{x}}{f} & 0 \\ 0 & 1 & -\frac{C W_{y}}{f} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Viewing Transformation

- Internal (intrinsic) camera parameters
- Near/Far planes
- N, F
- Render only objects between Near and Far

Normalization Transformations

- Frustrum boundaries open at 45°
- $S\left(\frac{2 f}{w}, \frac{2 f}{h}, 1\right)=\left[\begin{array}{cccc}\frac{2 f}{w} & 0 & 0 & 0 \\ 0 & \frac{2 f}{h} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
- Far plane at $z=-1$
- $S\left(\frac{1}{F}, \frac{1}{F}, \frac{1}{F}\right)=\left[\begin{array}{cccc}\frac{1}{F} & 0 & 0 & 0 \\ 0 & \frac{1}{F} & 0 & 0 \\ 0 & 0 & \frac{1}{F} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Projective Transformation

Perspective Transformation

Perspective Transformation

- Perspective transformation
- From canonical perspective viewing frustum (= cone at origin around -Z-axis) to regular box [-1 .. 1] \times [0 .. 1]
- Mapping of X and Y
- Lines through the origin are mapped to lines parallel to the Z-axis
- $x^{\prime}=x /-z$ and $y^{\prime}=y /-z$ (coordinate given by slope with respect to $z!$)
- Do not change X and Y additively (first two rows stay the same)
- Set W to -z so we divide when converting back to 3D
- Determines last row
- Perspective transformation
$-P=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ A & B & C & D \\ 0 & 0 & -1 & 0\end{array}\right)$ Still unknown

- Note: Perspective projection = perspective transformation + parallel projection

Perspective Transformation

Far: $-1 \quad(?, ?,-1,1) \longrightarrow(?, ?,-1,1)$
Near: $-n=-\frac{N}{F} \quad(?, ?,-n, 1) \quad \longrightarrow \quad(0,0,0,1)$

Perspective Transformation

- Computation of the coefficients A, B, C, D
- No shear of Z with respect to X and Y
- $A=B=0$
- Mapping of two known points
- Computation of the two remaining parameters C and D
- $\mathrm{n}=$ near / far (due to previous scaling by $1 /$ far)
- Following mapping must hold
$-(0,0,-1,1)^{T}=P(0,0,-1,1)^{T}$ and $(0,0,0,1)=P(0,0,-n, 1)$
- Resulting Projective transformation
$-P=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{1-n} & \frac{n}{1-n} \\ 0 & 0 & -1 & 0\end{array}\right)$
- Transform Z non-linearly (in 3D)
- $z^{\prime}=-\frac{z+n}{z(1-n)}$

Projection to Screen

Parallel Projection to 2D

- Parallel projection to [-1 .. 1] ${ }^{2}$
- Formally scaling in Z with factor 0
- Typically maintains Z in $[0,1]$ for depth buffering
- As a vertex attribute (see OpenGL later)
- Transformation from [-1 .. 1] ${ }^{2}$ to NDC ([0 .. 1] ${ }^{2)}$
- Scaling (by $1 / 2$ in X and Y) and translation (by (1/2,1/2))
- Projection matrix for combined transformation
- Delivers normalized device coordinates
- $P_{\text {parallel }}=\left(\begin{array}{cccc}\frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 \text { or } 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

Viewport Transformation

- Scaling and translation in 2D
- Scaling matrix to map to entire window on screen
- $S_{\text {raster }}$ (xres,yres)
- No distortion if aspects ration have been handled correctly earlier
- Sometime need to reverse direction of y
- Some formats have origin at bottom left, some at top left
- Needs additional translation
- Positioning on the screen
- Translation $T_{\text {raster }}$ (xpos,ypos)
- May be different depending on raster coordinate system
- Origin at upper left or lower left

Orthographic Projection

- Step 2a: Translation (orthographic)
- Bring near clipping plane into the origin
- Step 2b: Scaling to regular box $\left[-1\right.$.. 1] ${ }^{2} \times[0$.. -1]
- Mapping of X and Y

$$
-P_{o}=S_{x y z} T_{n e a r}=\left(\begin{array}{cccc}
\frac{2}{\text { width }} & 0 & 0 & 0 \\
0 & \frac{2}{\text { height }} & 0 & 0 \\
0 & 0 & \frac{1}{\text { far-near }} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & \text { near } \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Camera Transformation

- Complete transformation (combination of matrices)
- Perspective Projection
- $T_{\text {camera }}=T_{\text {raster }} S_{\text {raster }} P_{\text {parallel }} P_{\text {persp }} S_{\text {far }} S_{x y} H_{x y} R T$
- Orthographic Projection
- $T_{\text {camera }}=T_{\text {raster }} S_{\text {raster }} P_{\text {parallel }} S_{x y z} T_{\text {near }} H_{x y} R T$
- Other representations
- Other literature uses different conventions
- Different camera parameters as input
- Different canonical viewing frustum
- Different normalized coordinates
- $\left[\begin{array}{ll}-1 & . . \\ \hline\end{array}\right]^{3}$ versus $[0 . .1]^{3}$ versus ...
\rightarrow Results in different transformation matrices - so be careful !!!

Perspective vs. Orthographic

- Parallel lines remain parallel
- Useful for modeling => feature alignment

Coordinate Systems

- Normalized (projection) coordinates
- 3D: normalized [-1 .. 1] $]^{3}$ or [-1 .. 1] ${ }^{2} \times[0$.. -1]
- Clipping
- Parallel projection
- Normalized 2D device coordinates [-1 .. 1] ${ }^{2}$
- Translation and scaling
- Normalized 2D device coordinates [0 .. 1] ${ }^{2}$
- Where is the origin?
- RenderMan, X11: upper left
- OpenGL: lower left
- Viewport transformation
- Adjustment of aspect ratio
- Position in raster coordinates
- Raster coordinates
- 2D: units in pixels [0 .. xres-1, 0 .. yres-1]

OpenGL

- Traditional OpenGL pipeline
- Hierarchical modeling
- Modelview matrix stack
- Projection matrix stack
- Each stack can be
 independently pushed/popped
- Matrices can be applied/multiplied to top stack element
- Today
- Arbitrary matrices as attributes to vertex shaders that apply them as they wish (later)
- All matrix stack handling must now be done by application

OpenGL

- Traditional ModelView matrix
- Modeling transformations AND viewing transformation
- No explicit world coordinates
- Traditional Perspective transformation
- Simple specification
- glFrustum(left, right, bottom, top, near, far)
- glOrtho(left, right, bottom, top, near, far)
- Modern OpenGL
- Transformation provided by app, applied by vertex shader
- Vertex or Geometry shader must output clip space vertices
- Clip space: Just before perspective divide (by w)
- Viewport transformation
- glViewport(x, y, width, height)
- Now can even have multiple viewports
- glViewportIndexed(idx, x, y, width, height)
- Controlling the depth range (after Perspective transformation)
- glDepthRangeIndexed(idx, near, far)

Pinhole Camera Model

Infinitesimally small pinhole
\Rightarrow Theoretical (non-physical) model
$\frac{r}{g}=\frac{x}{f} \Rightarrow x=\frac{f r}{g} \quad \Rightarrow$ Sharp image everywhere
\Rightarrow Infinite depth of field
\Rightarrow Infinitely dark image in reality
\Rightarrow Diffraction effects in reality

Thin Lens Model

Lens focuses light from given position on object through finite-size aperture onto some location of the film plane, i.e. create sharp image.
 some location of the film plane, i.e. create sharp image.

Thin Lens Model: Depth of Field

Circle of confusion (CoC)

$$
\Delta e=\left|a\left(1-\frac{b}{b^{\prime}}\right)\right|
$$

Sharpness criterion based

$$
\Delta s>\Delta e
$$

 on pixel size and CoC

DOF: Defined radius r, such that CoC smaller than Δs

Depth of field (DOF)

$$
r<\frac{g \Delta s(g-f)}{a f+\Delta s(g-f)} \Rightarrow r \sim \frac{1}{a}
$$

The smaller the aperture, the larger the depth of field

Ignored Effects

A lot of things that we ignored with our pinhole camera model

- Depth-of-field
- Lens distortion
- Aberrations
- Vignetting
- Flare
- ...

Fish-Eye Camera

- Physical limitations of mapping function

Fish-Eye Camera

- Go beyond physical limitations
- Use polar parameterization
$-r=\operatorname{sqrt}\left(s s c x^{\wedge} 2+\operatorname{sscy}{ }^{\wedge} 2\right)$
- $\varphi=\operatorname{atan} 2(s s c y, \operatorname{sscx})$
- Wrap onto a sphere
- Equi-angular mapping
- $\theta=r$ * fov $/ 2$ (inclination angle)
$-\varphi=\varphi$
- Convert to Cartesian coordinates
$-x=\sin \theta \cos \varphi$
$-y=\sin \theta \sin \varphi$
$-z=\cos \theta$

Fish-Eye Camera

- Distortion: straight lines become curved

Fish-Eye Camera

- Capture Environment

Fish-Eye Camera

- Little Planet

Environment Camera

- Go way beyond physical limitations
- Use spherical parameterization
- Equi-angular mapping
- $\theta=$ sscy * fovy / 2 (elevation angle)
- $\varphi=\operatorname{sscx}$ * fovx / 2
- Convert to Cartesian coordinates
$-x=\cos \theta \cos \varphi$
$-\mathrm{y}=\cos \theta \sin \varphi$
$-\mathrm{z}=\sin \theta$

Environment Camera

- Vertical straight lines remain straight
- Horizontal straight lines become curved

