
Stefan Lemme

Computer Graphics

- Camera Transformation -

Overview

• Last time
– Affine space 𝑨, 𝑽,⊕

– Projective space 𝑷𝒏 ℝ

• set of lines through origin

• 𝑥, 𝑦, 𝑧, 𝑤 = 𝜆𝑥, 𝜆𝑦, 𝜆𝑧, 𝜆𝑤 =
𝑥

𝑤
,
𝑦

𝑤
,
𝑧

𝑤
, 1

– Normalized homogeneous coordinates

• Points 𝑥, 𝑦, 𝑧, 1

• Vectors 𝑥, 𝑦, 𝑧, 0

– Affine transformations

– Basic transformations

• Translation, Scaling, Reflection, Shearing, Rotation

– Transforming normals

• 𝑁 = 𝑀−1 𝑇

𝑎𝑥𝑥 𝑎𝑥𝑦 𝑎𝑥𝑧 𝑏𝑥

𝑎𝑦𝑥 𝑎𝑦𝑦 𝑎𝑦𝑧 𝑏𝑦

𝑎𝑧𝑥 𝑎𝑧𝑦 𝑎𝑧𝑧 𝑏𝑧

0 0 0 1

Overview

• Today
– How to use affine transformations

• Coordinate spaces

• Hierarchical structures

– Camera transformations

• Camera specification

• Perspective transformation

Coordinate Systems
• Local (object) coordinate system (3D)

– Object vertex positions

– Can be hierarchically nested in each other (scene graph, transf.
stack)

• World (global) coordinate system (3D)
– Scene composition and object placement

• Rigid objects: constant translation, rotation per object, (scaling)

• Animated objects: time-varying transformation in world-space

– Illumination can be computed in this space

4

Hierarchical Coordinate Systems

• Hierarchy of transformations
T_root //Position of the character in world
T_ShoulderR //Right shoulder position
T_ShoulderRJoint //Shoulder rotation <== User
T_UpperArmR //Elbow position
T_ElbowRJoint //Elbow rotation <== User
T_LowerArmR //Wrist position
T_WristRJoint //Wrist rotation <== User
... //Hand and fingers...

T_ShoulderL //Left shoulder position
T_ShoulderLJoint //Shoulder rotation <== User
T_UpperArmL //Elbow position
T_ElbowLJoint //Elbow rotation <== User
T_LowerArmL //Wrist position
...

Hierarchical Coordinate Systems

• Used in Scene Graphs
– Group objects hierarchically

– Local coordinate system is relative to parent coordinate system

– Apply transformation to the parent to change the whole sub-tree
(or sub-graph)

Ray-tracing Transformed Objects

𝑜 + 𝑡 𝑑

𝑀

𝑇

• Ray (world coordinates)

• 𝑇 – set of triangles (local coordinates)

• 𝑀 – transformation matrix (local-to-world)

𝑜 + 𝑡 𝑑

𝑀

𝑇

• Option 1: transform the triangles

def transform(T,M)
out = {}
foreach p in T

q = M*p
out.insert(q)

out.rebuildIndexStructure()
return out

transform(T,M).intersect(ray)

Ray-tracing Transformed Objects

𝑜 + 𝑡 𝑑

𝑀−1

𝑇

• Option 2: transform the ray

def intersect(obj,ray)
Minv = obj.M.inverse()
N = obj.M.normalTransform()
local_ray = transform(ray,Minv)
hit = obj.intersect(local_ray)
global_hit.point = transform(hit.point,M)
global_hit.normal = transform(hit.normal,N)
return global_hit

Ray-tracing Transformed Objects

Ray-tracing through a Hierarchy

T_root
T_ShoulderR
T_ShoulderRJoint
T_UpperArmR
T_ElbowRJoint
T_LowerArmR
T_WristRJoint
...

T_ShoulderL
T_ShoulderLJoint
T_UpperArmL
T_ElbowLJoint
T_LowerArmL
...

apply+push 𝑀−1

pop

apply+pop 𝑀,𝑁

Instancing

𝑀1

𝑇

• 𝑇 – set of triangles

• local coordinates

• memory

• 𝑀𝑖 – transformation matrices

• local-to-world

• Multiple rendered objects

• Correct lighting, shadows, etc...

• Never ”materialized” in memory

𝑀2

𝑀3

𝑀4

Coordinate Systems
• Local (object) coordinate system (3D)

• World (global) coordinate system (3D)

• Camera/view/eye coordinate system (3D)
– Coordinates relative to camera position & direction

• Camera itself specified relative to world space

– Illumination can also be done in that space

• Normalized device coordinate system (2.5D)
– After perspective transformation, rectilinear, in 0,1 3

– Normalization to view frustum, rasterization, and depth buffer

– Shading executed here (interpolation of color across triangle)

• Window/screen (raster) coordinate system (2D)
– 2D transformation to place image in window on the screen

Goal: Transform objects from local to screen
– typical for rasterization

12

Coordinate Systems

z

y

x

z

y

x

localworld

view

viewing

transformation

Coordinate Systems

camera

x

y

z

x

y

z

device

x

y

screen

projective transformation parallel projection

perspective projection

Viewing Transformation

z

y

x

world

view

viewing

transformation

• External (extrinsic) camera parameters
– Center of projection

• projection reference point (PRP)

– Optical axis: view-plane normal (VPN)

– View up vector (VUP)

• Needed Transformations
– Translation 𝑇 −𝑃𝑅𝑃

– Rotation 𝑅 𝑢, 𝜙 :

• 𝑉𝑃𝑁 ∥ − 𝑧

• 𝑉𝑈𝑃 ∈ Span 𝑦, 𝑧

PRP

VPN

VUP

z

y

x

Viewing Transformation

camera

x

y

z

• Internal (intrinsic) camera parameters
– Screen window

• center of the window (CW)

• width, height

– Focal length 𝑓
• projection plane distance along − 𝑧

– FOV

• Instead of 𝑓

• CW in the center

• vertical/horizontal

• aspect ratio

• Needed Transformations
– Shear to move CW to center

– H𝑥𝑦 −
𝐶𝑊𝑥

𝑓
, −

𝐶𝑊𝑦

𝑓
=

1 0 −
𝐶𝑊𝑥

𝑓
0

0 1 −
𝐶𝑊𝑦

𝑓
0

0 0 1 0
0 0 0 1

CW

𝑤

ℎ

𝑓

Viewing Transformation

camera

x

y

z

• Internal (intrinsic) camera parameters
– Near/Far planes

• 𝑁, 𝐹

• Render only objects between Near and Far

• Normalization Transformations
– Frustrum boundaries open at 45∘

• 𝑆
2𝑓

𝑤
,
2𝑓

ℎ
, 1 =

2𝑓

𝑤
0 0 0

0
2𝑓

ℎ
0 0

0 0 1 0
0 0 0 1

– Far plane at 𝑧 = −1

• 𝑆
1

𝐹
,
1

𝐹
,
1

𝐹
=

1

𝐹
0 0 0

0
1

𝐹
0 0

0 0
1

𝐹
0

0 0 0 1

𝑓

𝑁

F

Projective Transformation

x

y

z

x

y

z

device

projective transformation

Perspective Transformation

x

y

z

x

y

z

𝜆𝑥, 𝜆𝑦, 𝜆 −1 , 1
𝑥, 𝑦, ? , 1

𝑥, 𝑦, 𝑧, 1
𝑥

−𝑧
,
𝑦

−𝑧
, ? , 1

𝑥, 𝑦, ?⋅ −𝑧, −𝑧

Perspective Transformation
• Perspective transformation

– From canonical perspective viewing frustum (= cone at origin
around -Z-axis) to regular box [-1 .. 1]2 x [0 .. 1]

• Mapping of X and Y
– Lines through the origin are mapped to lines parallel to the Z-axis

• x´= x/-z and y´= y/-z (coordinate given by slope with respect to z!)

– Do not change X and Y additively (first two rows stay the same)

– Set W to –z so we divide when converting back to 3D

• Determines last row

• Perspective transformation

– 𝑃 =

1 0 0 0
0 1 0 0
𝐴 𝐵 𝐶 𝐷
0 0 −1 0

– Note: Perspective projection =
perspective transformation + parallel projection

Still unknown

45° (-1, 1)

-z

(-1, -1)

Perspective Transformation

x

y

z

x

y

z

? , ? , −1,1Far:

Near:

? , ? , −1,1

? , ? , −𝑛, 1

−1

−𝑛 = −
𝑁

𝐹
0,0,0,1

Perspective Transformation
• Computation of the coefficients A, B, C, D

– No shear of Z with respect to X and Y

• A = B = 0

– Mapping of two known points

• Computation of the two remaining parameters C and D

– n = near / far (due to previous scaling by 1/far)

• Following mapping must hold

– 0,0, −1, 1 𝑇 = 𝑃 0,0,−1,1 𝑇 and (0,0,0,1)=P(0,0,−n,1)

• Resulting Projective transformation

– 𝑃 =

1 0 0 0
0 1 0 0

0 0
1

1−𝑛

𝑛

1−𝑛

0 0 −1 0

– Transform Z non-linearly (in 3D)

• =′ݖ −
𝑧+𝑛

𝑧(1−𝑛)

45°

-z

-n -1 0 -1

Projection to Screen

x

y

z

device

x

y

screen

parallel projection

𝑃𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =

1

2
0 0

1

2

0
1

2
0

1

2
0 0 0 0
0 0 0 1

Parallel Projection to 2D
• Parallel projection to [-1 .. 1]2

– Formally scaling in Z with factor 0

– Typically maintains Z in [0,1] for depth buffering

• As a vertex attribute (see OpenGL later)

• Transformation from [-1 .. 1]2 to NDC ([0 .. 1]2)

– Scaling (by 1/2 in X and Y) and translation (by (1/2,1/2))

• Projection matrix for combined transformation
– Delivers normalized device coordinates

• 𝑃𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =

1

2
0 0

1

2

0
1

2
0

1

2

0 0 0 or 1 0
0 0 0 1

Viewport Transformation
• Scaling and translation in 2D

– Scaling matrix to map to entire window on screen

• 𝑆𝑟𝑎𝑠𝑡𝑒𝑟(𝑥𝑟𝑒𝑠, 𝑦𝑟𝑒𝑠)

• No distortion if aspects ration have been handled correctly earlier

• Sometime need to reverse direction of y

– Some formats have origin at bottom left, some at top left

– Needs additional translation

– Positioning on the screen

• Translation 𝑇𝑟𝑎𝑠𝑡𝑒𝑟(𝑥𝑝𝑜𝑠, 𝑦𝑝𝑜𝑠)

• May be different depending on raster coordinate system

– Origin at upper left or lower left

Orthographic Projection
• Step 2a: Translation (orthographic)

– Bring near clipping plane into the origin

• Step 2b: Scaling to regular box [-1 .. 1]2 x [0 .. -1]

• Mapping of X and Y

– 𝑃𝑜 = 𝑆𝑥𝑦𝑧𝑇𝑛𝑒𝑎𝑟 =

2

𝑤𝑖𝑑𝑡ℎ
0 0 0

0
2

ℎ𝑒𝑖𝑔ℎ𝑡
0 0

0 0
1

𝑓𝑎𝑟−𝑛𝑒𝑎𝑟
0

0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 near
0 0 0 1

Camera Transformation
• Complete transformation (combination of matrices)

– Perspective Projection

• 𝑇𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑇𝑟𝑎𝑠𝑡𝑒𝑟 𝑆𝑟𝑎𝑠𝑡𝑒𝑟 𝑃𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑃𝑝𝑒𝑟𝑠𝑝 𝑆𝑓𝑎𝑟 𝑆𝑥𝑦 𝐻𝑥𝑦 𝑅 𝑇

– Orthographic Projection

• 𝑇𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑇𝑟𝑎𝑠𝑡𝑒𝑟 𝑆𝑟𝑎𝑠𝑡𝑒𝑟 𝑃𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑆𝑥𝑦𝑧 𝑇𝑛𝑒𝑎𝑟𝐻𝑥𝑦𝑅 𝑇

• Other representations
– Other literature uses different conventions

• Different camera parameters as input

• Different canonical viewing frustum

• Different normalized coordinates

– [-1 .. 1]3 versus [0 ..1]3 versus ...

– ...

→ Results in different transformation matrices – so be careful !!!

Perspective vs. Orthographic
• Parallel lines remain parallel

• Useful for modeling => feature alignment

Coordinate Systems
• Normalized (projection) coordinates

– 3D: normalized [-1 .. 1]3 or [-1 .. 1]2 x [0 .. -1]

– Clipping

– Parallel projection

• Normalized 2D device coordinates [-1 .. 1]2

– Translation and scaling

• Normalized 2D device coordinates [0 .. 1]2

– Where is the origin?

• RenderMan, X11: upper left

• OpenGL: lower left

– Viewport transformation

• Adjustment of aspect ratio

• Position in raster coordinates

• Raster coordinates
– 2D: units in pixels [0 .. xres-1, 0 .. yres-1]

• Traditional OpenGL
pipeline
– Hierarchical modeling

• Modelview matrix stack

• Projection matrix stack

– Each stack can be
independently pushed/popped

– Matrices can be applied/multiplied
to top stack element

• Today
– Arbitrary matrices as

attributes to vertex
shaders that apply
them as they wish (later)

– All matrix stack
handling must now be
done by application

OpenGL

OpenGL
• Traditional ModelView matrix

– Modeling transformations AND viewing transformation
– No explicit world coordinates

• Traditional Perspective transformation
– Simple specification

• glFrustum(left, right, bottom, top, near, far)

• glOrtho(left, right, bottom, top, near, far)

• Modern OpenGL
– Transformation provided by app, applied by vertex shader
– Vertex or Geometry shader must output clip space vertices

• Clip space: Just before perspective divide (by w)

• Viewport transformation
– glViewport(x, y, width, height)
– Now can even have multiple viewports

• glViewportIndexed(idx, x, y, width, height)

– Controlling the depth range (after Perspective transformation)

• glDepthRangeIndexed(idx, near, far)

Pinhole Camera Model

𝑟

𝑔
=

𝑥

𝑓
⇒ 𝑥 =

𝑓𝑟

𝑔

f

g

r

x

Infinitesimally small pinhole

 Theoretical (non-physical) model

 Sharp image everywhere

 Infinite depth of field

 Infinitely dark image in reality

 Diffraction effects in reality

Thin Lens Model

f

g

b

a

r

s

Lens formula defines reciprocal focal length

(focus distance from lens of parallel light)

1

𝑓
=

1

𝑏
+

1

𝑔

𝑏 =
𝑓𝑔

𝑔 − 𝑓
Object center at distance g is in focus at

𝑏′ =
𝑓 𝑔 − 𝑟

𝑔 − 𝑟 − 𝑓
Object front at distance g-r is in focus at

Lens focuses light from given position on object through finite-size aperture onto

some location of the film plane, i.e. create sharp image.

f

Thin Lens Model: Depth of Field

ba

e
b’

Δ𝑒 = 𝑎 1 −
𝑏

𝑏′
Circle of confusion

(CoC)

Δ𝑠 > Δ𝑒Sharpness criterion based

on pixel size and CoC

Depth of field (DOF) 𝑟 <
𝑔Δ𝑠 𝑔 − 𝑓

𝑎𝑓 + Δ𝑠 𝑔 − 𝑓
⇒ 𝑟 ~

1

𝑎

The smaller the aperture, the larger the depth of field

DOF: Defined radius r, such that CoC smaller than ∆s

s

Ignored Effects
A lot of things that we ignored
with our pinhole camera model

– Depth-of-field

– Lens distortion

– Aberrations

– Vignetting

– Flare

– …

Fish-Eye Camera
• Physical limitations of mapping function

Fish-Eye Camera

up

forward

• Go beyond physical limitations

• Use polar parameterization
– r = sqrt(sscx^2 + sscy^2)

– φ = atan2(sscy, sscx)

• Wrap onto a sphere
– Equi-angular mapping

– θ = r * fov / 2 (inclination angle)

– φ = φ

• Convert to Cartesian coordinates
– x = sin θ cos φ

– y = sin θ sin φ

– z = cos θ

Fish-Eye Camera
• Distortion: straight lines become curved

Fish-Eye Camera
• Capture Environment

Fish-Eye Camera
• Little Planet

Environment Camera
• Go way beyond physical limitations

• Use spherical parameterization
– Equi-angular mapping

– θ = sscy * fovy / 2 (elevation angle)

– φ = sscx * fovx / 2

• Convert to Cartesian coordinates
– x = cos θ cos φ

– y = cos θ sin φ

– z = sin θ
up

forward

Environment Camera
• Vertical straight lines remain straight

• Horizontal straight lines become curved

