Computer Graphics

- Light Transport -

Philipp Slusallek \& Arsène Pérard-Gayot

Overview

- So far
- Nuts and bolts of ray tracing
- Today
- Light
- Physics behind ray tracing
- Physical light quantities
- Perception of light
- Light sources
- Light transport simulation
- Next lecture
- Reflectance properties
- Shading

LIGHT

What is Light?

- Electro-magnetic wave propagating at speed of light

What is Light?

What is Light?

- Ray
- Linear propagation
- Geometrical optics
- Vector
- Polarization
- Jones Calculus: matrix representation
- Wave
- Diffraction, interference
- Maxwell equations: propagation of light
- Particle
- Light comes in discrete energy quanta: photons
- Quantum theory: interaction of light with matter
- Field
- Electromagnetic force: exchange of virtual photons
- Quantum Electrodynamics (QED): interaction between particles

What is Light?

- Ray
- Linear propagation
- Geometrical optics
- Vector
- Polarization
- Jones Calculus: matrix representation
- Wave
- Diffraction, interference
- Maxwell equations: propagation of light
- Particle
- Light comes in discrete energy quanta: photons
- Quantum theory: interaction of light with matter
- Field
- Electromagnetic force: exchange of virtual photons
- Quantum Electrodynamics (QED): interaction between particles

Light in Computer Graphics

- Based on human visual perception
- Macroscopic geometry (\rightarrow Reflection Models)
- Tristimulus color model (\rightarrow Human Visual System)
- Psycho-physics: tone mapping, compression, ... (\rightarrow RIS course)
- Ray optic assumptions
- Macroscopic objects
- Incoherent light
- Light: scalar, real-valued quantity
- Linear propagation
- Superposition principle: light contributions add, do not interact
- No attenuation in free space
- Limitations
- No microscopic structures ($\approx \lambda$): diffraction, interference
- No polarization
- No dispersion, ...

Angle and Solid Angle

- The angle θ (in radians) subtended by a curve in the plane is the length of the corresponding arc on the unit circle: $I=\theta r=\theta$
- The solid angle Ω, $d \omega$ subtended by an object is the surface area of its projection onto the unit sphere
- Units for measuring solid angle: steradian [sr] (dimensionless)

Solid Angle in Spherical Coords

- Infinitesimally small solid angle dw
$-d u=r d \theta$
$-d v=r^{\prime} d \Phi=r \sin \theta d \Phi$
$-d A=d u d v=r^{2} \sin \theta d \theta d \Phi$
$-d \omega=d A / r^{2}=\sin \theta d \theta d \Phi$
- Finite solid angle

$$
\Omega=\int_{\phi_{0}}^{\phi_{1}} d \phi \int_{\theta_{0}(\phi)}^{\theta_{1}(\phi)} \sin \theta d \theta
$$

Solid Angle for a Surface

- The solid angle subtended by a small surface patch S with area $d A$ is obtained (i) by projecting it orthogonal to the vector r from the origin:

$d A \cos \theta$

and (ii) dividing by the squared distance to the origin: $\mathrm{d} \omega=\frac{\mathrm{d} A \cos \theta}{r^{2}}$

$$
\Omega=\iint_{S} \frac{\vec{r} \cdot \vec{n}}{r^{3}} d A
$$

Radiometry

- Definition:
- Radiometry is the science of measuring radiant energy transfers. Radiometric quantities have physical meaning and can be directly measured using proper equipment such as spectral photometers.
- Radiometric Quantities
- Energy
- Radiant power
- Intensity
- Irradiance
- Radiosity
- Radiance
[J]
[watt = J/s]
[watt/sr]
[watt/m²]
[watt/m²]
[watt/(m² sr)]
$Q \quad$ (\#Photons x Energy $=n \cdot h v$)
Φ (Total Flux)
I (Flux from a point per s.angle)
E (Incoming flux per area)
B (Outgoing flux per area)
$L \quad$ (Flux per area \& proj. s. angle)

Radiometric Quantities: Radiance

- Radiance is used to describe radiant energy transfer
- Radiance L is defined as
- The power (flux) traveling through some point x
- In a specified direction $\omega=(\theta, \varphi)$
- Per unit area perpendicular to the direction of travel
- Per unit solid angle
- Thus, the differential power $\boldsymbol{d}^{\mathbf{2}} \boldsymbol{\Phi}$ radiated through the differential solid angle $d \omega$, from the projected ${ }^{\omega}$ differential area $d A \cos \theta$ is:

$$
d^{2} \Phi=L(x, \omega) d A \cos \theta d \omega
$$

Radiometric Quantities: Irradiance

- Irradiance E is defined as the total power per unit area (flux density) incident onto a surface. To obtain the total flux incident to $d A$, the incoming radiance L_{i} is integrated over the upper hemisphere Ω_{+}above the surface:

$$
\begin{gathered}
E \equiv \frac{d \Phi}{d A} \\
d \Phi=\left[\int_{\Omega_{+}} L_{i}(x, \omega) \cos \theta d \omega\right] d A \\
E(x)=\int_{\Omega_{+}} L_{i}(x, \omega) \cos \theta d \omega=\int_{00}^{\frac{\pi}{2} 2 \pi} \int_{i}(x, \omega) \cos \theta \sin \theta d \theta d \phi
\end{gathered}
$$

Radiometric Quantities: Radiosity

- Radiosity B is defined as the total power per unit area (flux density) exitant from a surface. To obtain the total flux incident to $d A$, the outgoing radiance L_{o} is integrated over the upper hemisphere Ω_{+}above the surface:

$$
\begin{gathered}
B \equiv \frac{d \Phi}{d A} \\
d \Phi=\left[\int_{\Omega_{+}} L_{o}(x, \omega) \cos \theta d \omega\right] d A \\
B(x)=\int_{\Omega_{+}} L_{o}(x, \omega) \cos \theta d \omega=\iint_{00}^{\frac{\pi}{2} 2 \pi} L_{o}(x, \omega) \cos \theta \sin \theta d \theta d \phi
\end{gathered}
$$

Spectral Properties

- Wavelength
- Light is composed of electromagnetic waves
- These waves have different frequencies and wavelengths
- Most transfer quantities are continuous functions of wavelength
- In graphics
- Each measurement $L(x, \omega)$ is for a discrete band of wavelength only
- Often R(ed, long), G(reen, medium), B(lue, short) (but see later)

Photometry

- The human eye is sensitive to a limited range of wavelengths
- Roughly from 380 nm to 780 nm
- Our visual system responds differently to different wavelengths
- Can be characterized by the Luminous Efficiency Function V(λ)
- Represents the average human spectral response
- Separate curves exist for light and dark adaptation of the eye
- Photometric quantities are derived from radiometric quantities by integrating them against this function

Radiometry vs. Photometry

Physics-based quantities

Perception-based quantities

Radiometry		\rightarrow	Photometry	
W	Radiant power	\rightarrow	Luminous power	Lumens (lm)
$\mathrm{W} / \mathrm{m}^{2}$	Radiosity Irradiance	\rightarrow	Luminosity Illuminance	Lux $\left(\mathrm{lm} / \mathrm{m}^{2}\right)$
$\mathrm{W} / \mathrm{m}^{2} / \mathrm{sr}$	Radiance	\rightarrow	Luminance	$\mathrm{cd} / \mathrm{m}^{2}\left(\mathrm{~lm} / \mathrm{m}^{2} / \mathrm{sr}\right)$

Perception of Light

photons / second = flux = energy / time = power $(\boldsymbol{\Phi})$
angular extent of rod $=$ resolution $\left(\approx 1\right.$ arcminute $\left.{ }^{2}\right)$ projected rod size $=\mathbf{a r e a}$
angular extent of pupil aperture ($r \leq 4 \mathrm{~mm}$) = solid angle flux proportional to area and solid angle
radiance $=$ flux per unit are a per unit solid angle

rod sensitive to flux

Ω

$A \approx l^{2} \cdot \Omega$
$\Omega^{\prime} \approx \pi \cdot r^{2} / l^{2}$
$\Phi=L \mathrm{~A} \Omega^{\prime}$
$L=\frac{\Phi}{\Omega^{\prime} \cdot A}$

Brightness Perception

- $A^{\prime}>A$: photon flux per rod stays constant
- $A^{\prime}<A$: photon flux per rod decreases

Where does the Sun turn into a star ?

- Depends on apparent Sun disc size on retina
- Photon flux per rod stays the same on Mercury, Earth or Neptune
- Photon flux per rod decreases when $\Omega^{\prime}<1$ arcminute 2 (beyond Neptune)

Radiance in Space

Flux leaving surface 1 must be equal to flux arriving on surface 2

$$
L_{1} d \Omega_{1} d A_{1}=L_{2} d \Omega_{2} d A_{2}
$$

From geometry follows $\quad d \Omega_{1}=\frac{d A_{2}}{l^{2}} \quad d \Omega_{2}=\frac{d A_{1}}{l^{2}}$
Ray throughput $T: \quad T=d \Omega_{1} \cdot d A_{1}=d \Omega_{2} \cdot d A_{2}=\frac{d A_{1} \cdot d A_{2}}{l^{2}}$

$$
L_{1}=L_{2}
$$

The radiance in the direction of a light ray remains constant as it propagates along the ray

Point Light Source

- Point light with isotropic radiance
- Power (total flux) of a point light source
- $\Phi_{g}=$ Power of the light source [watt]
- Intensity of a light source (radiance cannot be defined, no area)
- $I=\Phi_{g} / 4 \pi$ [watt/sr]
- Irradiance on a sphere with radius r around light source:
- $E_{r}=\Phi_{g} /\left(4 \pi r^{2}\right)[$ watt $/ \mathrm{m} 2]$
- Irradiance on some other surface A
$E(x)=\frac{d \Phi_{g}}{d A}=\frac{d \Phi_{g}}{d \omega} \frac{d \omega}{d A}=I \frac{d \omega}{d A}$
$=\frac{\Phi_{g}}{4 \pi} \cdot \frac{d A \cos \theta}{r^{2} d A}$
$=\frac{\Phi_{g}}{4 \pi} \cdot \frac{\cos \theta}{r^{2}}$

Inverse Square Law

- Irradiance E : power per \mathbf{m}^{2}
- Illuminating quantity
- Distance-dependent
- Double distance from emitter: area of sphere is four times bigger
- Irradiance falls off with inverse of squared distance
- For point light sources (!)

Light Source Specifications

- Power (total flux)
- Emitted energy / time
- Active emission size
- Point, line, area, volume
- Spectral distribution
- Thermal, line spectrum
- Directional distribution
- Goniometric diagram

Black body radiation (see later)

Light Source Classification

- Spot-lights
- Projectors
- Distant sources
- Diffuse emitters
- Torchieres
- Frosted glass lamps
- Ambient light
- "Photons everywhere"

Emitting area

- Volume
- Neon advertisements
- Sodium vapor lamps
- Area
- CRT, LCD display
- (Overcast) sky
- Line
- Clear light bulb, filament
- Point
- Xenon lamp
- Arc lamp
- Laser diode

Sky Light

- Sun
- Point source (approx.)
- White light (by def.)
- Sky
- Area source
- Scattering: blue
- Horizon
- Brighter
- Haze: whitish
- Overcast sky
- Multiple scattering in clouds
- Uniform grey
- Several sky models are available

Courtesy Lynch \& Livingston

LIGHT TRANSPORT

Light Transport in a Scene

- Scene
- Lights (emitters)
- Object surfaces (partially absorbing)
- Illuminated object surfaces become emitters, too!
- Radiosity = Irradiance minus absorbed photons flux density
- Radiosity: photons per second per m^{2} leaving surface
- Irradiance: photons per second per m^{2} incident on surface
- Light bounces between all mutually visible surfaces
- Invariance of radiance in free space
- No absorption in-between objects
- Dynamic energy equilibrium
- Emitted photons = absorbed photons (+ escaping photons)
\rightarrow Global Illumination, discussed in RIS lecture

Surface Radiance

$$
L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}
$$

- Visible surface radiance
- Surface position
- Outgoing direction
- Incoming illumination direction
- Self-emission

- Reflected light
- Incoming radiance from all directions $L_{i}\left(x, \omega_{i}\right)$
- Direction-dependent reflectance (BRDF: bidirectional reflectance distribution function)

$$
f_{r}\left(\omega_{i}, x, \omega_{o}\right)
$$

Rendering Equation

- Most important equation for graphics
- Expresses energy equilibrium in scene

$$
L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}
$$

total radiance $=$ emitted + reflected radiance

- First term: emissivity of the surface
- Non-zero only for light sources
- Second term: reflected radiance
- Integral over all possible incoming directions of radiance times angle-dependent surface reflection function
- Fredholm integral equation of 2nd kind
- Unknown radiance appears both on the left-hand side and inside the integral

- Numerical methods necessary to compute approximate solution

Rendering Equation: Approximations

- Approximations based only on empirical foundations
- An example: polygon rendering in OpenGL
- Using RGB instead of full spectrum
- Follows roughly the eye's sensitivity
- Sampling hemisphere along finite, discrete directions
- Simplifies integration to summation
- Reflection function model (BRDF)
- Parameterized function
- Ambient: constant, non-directional, background light
- Diffuse: light reflected uniformly in all directions
- Specular: light from mirror-reflection direction

Ray Tracing

$$
L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}
$$

- Simple ray tracing
- Illumination from discrete point light sources only - direct illumination only
- Integral \rightarrow sum
- No global illumination
- Evaluates angle-dependent reflectance function (BRDF) - shading process
- Advanced ray tracing techniques
- Recursive ray tracing
- Multiple reflections/refractions (for specular surfaces)
- Ray tracing for global illumination
- Stochastic sampling (Monte Carlo methods)

- Photon mapping

RE: Integrating over Surfaces

- Outgoing illumination at a point

$$
\begin{aligned}
& L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+L_{r}\left(x, \omega_{o}\right) \\
& L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}
\end{aligned}
$$

- Linking with other surface points
- Incoming radiance at x is outgoing radiance at y

$$
L_{i}\left(x, \omega_{i}\right)=L\left(y,-\omega_{i}\right)=L\left(R T\left(x, \omega_{i}\right),-\omega_{i}\right)
$$

- Ray-Tracing operator: $\mathrm{y}=R T\left(x, \omega_{i}\right)$

Integrating over Surfaces

- Outgoing illumination at a point

$$
L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}
$$

- Re-parameterization over surfaces S

$$
d \omega_{i}=\frac{\cos \theta_{y}}{\|x-y\|^{2}} d A_{y}
$$

$$
\begin{aligned}
& L\left(x, \omega_{o}\right) \\
& =L_{e}\left(x, \omega_{o}\right) \\
& +\int_{y \in S} f_{r}\left(\omega(x, y), x, \omega_{o}\right) L_{i}(x, \omega(x, y)) V(x, y) \frac{\cos \theta_{i} \cos \theta_{y}}{\|x-y\|^{2}} d A_{y}
\end{aligned}
$$

Integrating over Surfaces

$$
\begin{aligned}
& L\left(x, \omega_{o}\right) \\
& =L_{e}\left(x, \omega_{o}\right) \\
& +\int_{y \in S} f_{r}\left(\omega(x, y), x, \omega_{o}\right) L_{i}(x, \omega(x, y)) V(x, y) \frac{\cos \theta_{i} \cos \theta_{y}}{\|x-y\|^{2}} d A_{y}
\end{aligned}
$$

- Geometry term: $G(\mathrm{x}, \mathrm{y})=V(x, y) \frac{\cos \theta_{i} \cos \theta_{y}}{\|x-y\|^{2}}$
- Visibility term: $V(x, y)=\left\{\begin{array}{l}1, \text { if visible } \\ 0, \text { otherwise }\end{array}\right.$
- Integration over all surfaces: $\int_{y \in S} \cdots d A_{y}$

$$
L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{y \in S} f_{r}\left(\omega(x, y), x, \omega_{o}\right) L_{i}(x, \omega(x, y)) G(x, y) d A_{y}
$$

Radiosity Algorithm

- Lambertian surface (only diffuse reflection)
- Radiosity equation: simplified form of the rendering equation
- Dividing scene surfaces into small planar patches
- Assumes local constancy: diffuse reflection, radiosity, visibility
- "Radiosity" algorithms: Discretizes into linear equation
- Algorithm
- Form factor: percentage of light flowing between 2 patches
- Form system of linear equations
- Iterative solution
- Discussed in details in RIS course

Radiosity Equation

- Diffuse reflection \Rightarrow constant BRDF \& emission

$$
\begin{aligned}
& f_{r}\left(\omega(x, y), x, \omega_{o}\right)=f_{r}(x) \Rightarrow \\
& \rho(x)=\int_{\Omega_{+}} f_{r}(x) \cos \theta d \omega=f_{r}(x) \int_{00_{1}}^{\frac{\pi}{2} 2 \pi} \cos \theta \sin \theta d \theta d \phi=\pi f_{r}(x)
\end{aligned}
$$

- Reflectance factor or albedo: between $[0,1]$
- Direction-independent out-going radiance

$$
\begin{aligned}
& L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+f_{r}(x) \int_{y \in S} L_{i}(x, \omega(x, y)) G(x, y) d A_{y} \\
& =L_{e}(x)+f_{r}(x) E(x)=L_{o}(x)
\end{aligned}
$$

- Form factor
- Defines percentage of light leaving dAy arriving at $d A$

$$
F(x, y)=\frac{G(x, y)}{\pi}
$$

Radiosity Equation

- Radiosity

$$
\begin{gathered}
B=\int_{\Omega_{+}} L_{o}\left(x, \omega_{o}\right) \cos \theta_{o} d \omega_{o}=L_{o} \int_{\Omega_{+}} \cos \theta_{o} d \omega_{o}=\pi L_{o} \\
B(x)=\pi L_{e}(x)+\pi f_{r}(x) E(x)=B_{e}(x)+\rho(x) E(x)
\end{gathered}
$$

- Irradiance

$$
\begin{aligned}
& E(x)=\int_{y \in S} L_{i}(x, \omega(x, y)) G(x, y) d A_{y} \\
& =\int_{y \in S} L_{o}(y,-\omega(x, y)) G(x, y) d A_{y}=\int_{y \in S} \frac{B(y)}{\pi} G(x, y) d A_{y} \\
& =\int_{y \in S} B(y) F(x, y) d A_{y}
\end{aligned}
$$

Linear Operators

- Properties
- Fredholm equation of $2^{\text {nd }}$ kind $B(x)=B_{e}(x)+\rho(x) \int_{y \in S} F(x, y) B(y) d A_{y}$
- Global linking
- Potentially each point with each other

$$
f(x)=g(x)+K[f(x)]
$$

- Often sparse system (occlusions)
- No consideration of volume effects!!
- Linear operator

$$
K[f(x)]=\int k(x, y) f(y) d y
$$

- Acts on functions like matrices act on vectors
- Superposition principle

$$
K[a f+b g]=a K[f]+b K[g]
$$

- Scaling and addition

Formal Solution of Integral Equations

$$
B(x)=B_{e}(x)+\rho(x) \int_{y \in S} F(x, y) B(y) d A_{y}
$$

- Integral equation

$$
B(\cdot)=B_{e}(\cdot)+K[B(\cdot)] \Rightarrow(I-K)[B(\cdot)]=B_{e}(\cdot)
$$

- Formal solution

$$
B(\cdot)=(I-K)^{-1}\left[B_{e}(\cdot)\right]
$$

- Neumann series
- Converges only if $|K|<1$ which is true in all physical settings

$$
\begin{gathered}
\frac{1}{1-x}=1+x+x^{2}+\cdots \quad \frac{1}{I-K}=I+K+K^{2}+\cdots \\
(I-K) \frac{1}{I-K}=(I-K)\left(I+K+K^{2}+\cdots\right)=I+K+K^{2}+\cdots-\left(K+K^{2}+\cdots\right)=I
\end{gathered}
$$

Formal Solutions (2)

- Successive approximation

$$
\begin{aligned}
& \frac{1}{I-K} B_{e}(\cdot)=B_{e}(\cdot)+K\left[B_{e}(\cdot)\right]+K^{2}\left[B_{e}(\cdot)\right]+\cdots \\
& =B_{e}(\cdot)+K\left[B_{e}(\cdot)+K\left[B_{e}(\cdot)+\cdots\right]\right]
\end{aligned}
$$

- Direct light from the light source

$$
\begin{aligned}
B_{1}(\cdot) & =B_{e}(\cdot) \\
B_{2}(\cdot) & =B_{e}(\cdot)+K\left[B_{e}(\cdot)\right] \\
B_{n}(\cdot) & =B_{e}(\cdot)+K\left[B_{n-1}(\cdot)\right]
\end{aligned}
$$

Radiosity Algorithm

Radiosity Algorithm

Lighting Simulation

Lighting Simulation

Lighting Simulation

Wrap Up

- Physical Quantities in Rendering
- Radiance
- Radiosity
- Irradiance
- Intensity
- Light Perception
- Light Source Definition
- Rendering Equation
- Key equation in graphics (!)
- Integral equation
- Describes global balance of radiance

