Computer Graphics

- Light Transport -

Philipp Slusallek & Arsène Pérard-Gayot

Overview

So far

Nuts and bolts of ray tracing

Today

- Light
 - · Physics behind ray tracing
 - Physical light quantities
 - Perception of light
 - Light sources
- Light transport simulation

Next lecture

- Reflectance properties
- Shading

LIGHT

Electro-magnetic wave propagating at speed of light

Ray

- Linear propagation
- Geometrical optics

Vector

- Polarization
- Jones Calculus: matrix representation

Wave

- Diffraction, interference
- Maxwell equations: propagation of light

Particle

- Light comes in discrete energy quanta: photons
- Quantum theory: interaction of light with matter

Field

- Electromagnetic force: exchange of virtual photons
- Quantum Electrodynamics (QED): interaction between particles

Ray

- Linear propagation
- Geometrical optics

Vector

- Polarization
- Jones Calculus: matrix representation

Wave

- Diffraction, interference
- Maxwell equations: propagation of light

Particle

- Light comes in discrete energy quanta: photons
- Quantum theory: interaction of light with matter

Field

- Electromagnetic force: exchange of virtual photons
- Quantum Electrodynamics (QED): interaction between particles

Light in Computer Graphics

Based on human visual perception

- Macroscopic geometry (→ Reflection Models)
- Tristimulus color model (→ Human Visual System)
- Psycho-physics: tone mapping, compression, ... (→ RIS course)

Ray optic assumptions

- Macroscopic objects
- Incoherent light
- Light: scalar, real-valued quantity
- Linear propagation
- Superposition principle: light contributions add, do not interact
- No attenuation in free space

Limitations

- No microscopic structures (≈ λ): diffraction, interference
- No polarization
- No dispersion, ...

Angle and Solid Angle

- The angle θ (in radians) subtended by a curve in the plane is the length of the corresponding arc on the unit circle: $I = \theta r = \theta$
- The solid angle Ω , $d\omega$ subtended by an object is the surface area of its projection onto the unit sphere
 - Units for measuring solid angle: steradian [sr] (dimensionless)

Solid Angle in Spherical Coords

• Infinitesimally small solid angle $d\omega$

- $-du = r d\theta$
- $-dv = r' d\Phi = r \sin \theta d\Phi$
- $-dA = du dv = r^2 \sin \theta d\theta d\Phi$
- $d\omega = dA/r^2 = \sin\theta \, d\theta d\Phi$

Finite solid angle

Solid Angle for a Surface

• The solid angle subtended by a small surface patch S with area dA is obtained (i) by projecting it orthogonal to the vector r from the origin: $dA\cos\theta$

and (ii) dividing by the squared distance to the origin: $d\omega = \frac{dA \cos \theta}{r^2}$

$$\Omega = \iint_{S} \frac{\vec{r} \cdot \vec{n}}{r^3} dA$$

Radiometry

Definition:

Radiometry is the science of measuring radiant energy transfers.
 Radiometric quantities have physical meaning and can be directly measured using proper equipment such as spectral photometers.

Radiometric Quantities

Energy	[J]	Q	(#Photons x Energy = $n \cdot h\nu$)
 Radiant power 	[watt = J/s]	Φ	(Total Flux)
Intensity	[watt/sr]	1	(Flux from a point per s.angle)
Irradiance	[watt/m ²]	E	(Incoming flux per area)
Radiosity	[watt/m ²]	В	(Outgoing flux per area)
Radiance	[watt/(m² sr)]	L	(Flux per area & proj. s. angle)

Radiometric Quantities: Radiance

- Radiance is used to describe radiant energy transfer
- Radiance L is defined as
 - The power (flux) traveling through some point x
 - In a specified direction $\omega = (\theta, \varphi)$
 - Per unit area perpendicular to the direction of travel
 - Per unit solid angle
- Thus, the differential power $d^2\Phi$ radiated through the differential solid angle $d\omega$, from the projected σ^ω differential area $dA\cos\theta$ is:

$$d^2\Phi = L(x,\omega)dA\cos\theta\,d\omega$$

Radiometric Quantities: Irradiance

• Irradiance E is defined as the **total power per unit area** (flux density) incident onto a surface. To obtain the total flux incident to dA, the incoming radiance L_i is integrated over the upper hemisphere Ω_+ above the surface:

$$E \equiv \frac{d\Phi}{dA}$$

$$d\Phi = \left[\int_{\Omega_{+}} L_{i}(x,\omega) \cos\theta \, d\omega \right] dA$$

$$E(x) = \int_{\Omega_{+}} L_{i}(x,\omega) \cos\theta \, d\omega = \iint_{00} L_{i}(x,\omega) \cos\theta \sin\theta \, d\theta d\phi$$

Radiometric Quantities: Radiosity

• Radiosity B is defined as the total power per unit area (flux density) exitant from a surface. To obtain the total flux incident to dA, the outgoing radiance L_o is integrated over the upper hemisphere Ω_+ above the surface:

$$B \equiv \frac{d\Phi}{dA}$$

$$d\Phi = \left[\int_{\Omega_{+}} L_{o}(x, \omega) \cos \theta \, d\omega \right] dA$$

$$B(x) = \int_{\Omega_{+}} L_{o}(x, \omega) \cos \theta \, d\omega = \iint_{00} L_{o}(x, \omega) \cos \theta \sin \theta \, d\theta d\phi$$

Spectral Properties

Wavelength

- Light is composed of electromagnetic waves
- These waves have different frequencies and wavelengths
- Most transfer quantities are continuous functions of wavelength

In graphics

- Each measurement $L(x,\omega)$ is for a discrete band of wavelength only
 - Often R(ed, long), G(reen, medium), B(lue, short) (but see later)

Photometry

- The human eye is sensitive to a limited range of wavelengths
 - Roughly from 380 nm to 780 nm
- Our visual system responds differently to different wavelengths
 - Can be characterized by the Luminous Efficiency Function V(λ)
 - Represents the average human spectral response
 - Separate curves exist for light and dark adaptation of the eye
- Photometric quantities are derived from radiometric quantities by integrating them against this function

Radiometry vs. Photometry

Physics-based quantities

Perception-based quantities

Radiometry		\rightarrow	Photometry		
W	Radiant power	\rightarrow	Luminous power	Lumens (lm)	
W/m ²	Radiosity	270. 1484421	Luminosity		
	Irradiance	\rightarrow	Illuminance	Lux (lm/m ²)	
W/m ² /sr	Radiance	\rightarrow	Luminance	cd/m ² (lm/m ² /sr)	

Perception of Light

photons / second = flux = energy / time = power (Φ)

 $angular \ extent \ of \ rod = resolution \ (\approx 1 \ arcminute^2)$

projected rod size = area

angular extent of pupil aperture $(r \le 4 \text{ mm}) = \text{solid}$ angle

flux proportional to area and solid angle

radiance = flux per unit area per unit solid angle

rod sensitive to flux

 Ω

$$A \approx l^2 \cdot \Omega$$

$$\Omega' \approx \pi \cdot r^2 / l^2$$

$$\Phi = L A \Omega'$$

$$L = \frac{\Phi}{\Omega' \cdot A}$$

The eye detects radiance

As lincreases:

$$\Phi_0 = L \cdot l^2 \cdot \Omega \cdot \pi \frac{r^2}{l^2} = L \cdot \text{const}$$

Brightness Perception

- A' > A: photon flux per rod stays constant
- A' < A: photon flux per rod decreases

Where does the Sun turn into a star?

- Depends on apparent Sun disc size on retina
- Photon flux per rod stays the same on Mercury, Earth or Neptune
- Photon flux per rod decreases when $\Omega' < 1$ arcminute² (beyond Neptune)

Radiance in Space

Flux leaving surface 1 must be equal to flux arriving on surface 2 $L_1 d\Omega_1 dA_1 = L_2 d\Omega_2 dA_2$

From geometry follows
$$d\Omega_1 = \frac{dA_2}{l^2}$$
 $d\Omega_2 = \frac{dA_1}{l^2}$

Ray throughput T: $T = d\Omega_1 \cdot dA_1 = d\Omega_2 \cdot dA_2 = \frac{dA_1 \cdot dA_2}{l^2}$

$$L_1 = L_2$$

The radiance in the direction of a light ray remains constant as it propagates along the ray

Point Light Source

Point light with isotropic radiance

- Power (total flux) of a point light source
 - Φ_q = Power of the light source [watt]
- Intensity of a light source (radiance cannot be defined, no area)
 - $I = \Phi_q / 4\pi$ [watt/sr]
- Irradiance on a sphere with radius r around light source:
 - $E_r = \Phi_g / (4 \pi r^2)$ [watt/m2]

$$E(x) = \frac{d\Phi_g}{dA} = \frac{d\Phi_g}{d\omega} \frac{d\omega}{dA} = I \frac{d\omega}{dA}$$

$$= \frac{\Phi_g}{4\pi} \cdot \frac{dA\cos\theta}{r^2 dA}$$

$$=\frac{\Phi_g}{4\pi}\cdot\frac{\cos\theta}{r^2}$$

Inverse Square Law

- Irradiance E: power per m²
 - Illuminating quantity
- Distance-dependent
 - Double distance from emitter: area of sphere is four times bigger
- Irradiance falls off with inverse of squared distance
 - For point light sources (!)

Light Source Specifications

- Power (total flux)
 - Emitted energy / time
- Active emission size
 - Point, line, area, volume
- Spectral distribution
 - Thermal, line spectrum
- Directional distribution
 - Goniometric diagram

Black body radiation (see later)

Light Source Classification

Radiation characteristics

Directional light

- Spot-lights
- Projectors
- Distant sources

Diffuse emitters

- Torchieres
- Frosted glass lamps

Ambient light

- "Photons everywhere"

Emitting area

Volume

- Neon advertisements
- Sodium vapor lamps

Area

- CRT, LCD display
- (Overcast) sky

Line

Clear light bulb, filament

Point

- Xenon lamp
- Arc lamp
- Laser diode

Sky Light

Sun

- Point source (approx.)
- White light (by def.)

Sky

- Area source
- Scattering: blue

Horizon

- Brighter
- Haze: whitish

Overcast sky

- Multiple scattering in clouds
- Uniform grey
- Several sky models are available

Courtesy Lynch & Livingston

LIGHT TRANSPORT

Light Transport in a Scene

Scene

- Lights (emitters)
- Object surfaces (partially absorbing)
- Illuminated object surfaces become emitters, too!
 - Radiosity = Irradiance minus absorbed photons flux density
 - Radiosity: photons per second per m² leaving surface
 - Irradiance: photons per second per m² incident on surface
- Light bounces between all mutually visible surfaces
- Invariance of radiance in free space
 - No absorption in-between objects
- Dynamic energy equilibrium
 - Emitted photons = absorbed photons (+ escaping photons)
 - → Global Illumination, discussed in RIS lecture

Surface Radiance

$$L(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x, \omega_i) \cos \theta_i \, d\omega_i$$

- Visible surface radiance
 - Surface position
 - Outgoing direction
- Incoming illumination direction
- Self-emission
- Reflected light
 - Incoming radiance from all directions
 - Direction-dependent reflectance (BRDF: bidirectional reflectance distribution function)

$$L_i(x,\omega_i)$$

$$f_r(\omega_i, x, \omega_o)$$

Rendering Equation

Typ. Exam
Question!

- Most important equation for graphics
 - Expresses energy equilibrium in scene

$$L(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x, \omega_i) \cos \theta_i \, d\omega_i$$

total radiance = emitted + reflected radiance

- First term: emissivity of the surface
 - Non-zero only for light sources
- Second term: reflected radiance
 - Integral over all possible incoming directions of radiance times angle-dependent surface reflection function
- Fredholm integral equation of 2nd kind
 - Unknown radiance appears both on the left-hand side and inside the integral
 - Numerical methods necessary to compute approximate solution

Rendering Equation: Approximations

- Approximations based only on empirical foundations
 - An example: polygon rendering in OpenGL
- Using RGB instead of full spectrum
 - Follows roughly the eye's sensitivity
- Sampling hemisphere along finite, discrete directions
 - Simplifies integration to summation
- Reflection function model (BRDF)
 - Parameterized function
 - Ambient: constant, non-directional, background light
 - Diffuse: light reflected uniformly in all directions
 - Specular: light from mirror-reflection direction

Ray Tracing

$$L(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x, \omega_i) \cos \theta_i \, d\omega_i$$

Simple ray tracing

- Illumination from discrete point light sources only – direct illumination only
 - Integral \rightarrow sum
 - No global illumination
- Evaluates angle-dependent reflectance function (BRDF) – shading process

Advanced ray tracing techniques

- Recursive ray tracing
 - Multiple reflections/refractions (for specular surfaces)
- Ray tracing for global illumination
 - Stochastic sampling (Monte Carlo methods)
 - Photon mapping

RE: Integrating over Surfaces

Outgoing illumination at a point

$$L(x, \omega_o) = L_e(x, \omega_o) + L_r(x, \omega_o)$$

$$L(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x, \omega_i) \cos \theta_i d\omega_i$$

- Linking with other surface points
 - Incoming radiance at x is outgoing radiance at y

$$L_i(x, \omega_i) = L(y, -\omega_i) = L(RT(x, \omega_i), -\omega_i)$$

- Ray-Tracing operator: $y = RT(x, \omega_i)$

Integrating over Surfaces

Outgoing illumination at a point

$$L(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x, \omega_i) \cos \theta_i d\omega_i$$

Re-parameterization over surfaces S

$$d\omega_i = \frac{\cos \theta_y}{\|x - y\|^2} dA_y$$

$$L(x, \omega_o)$$

$$= L_e(x, \omega_o)$$

$$+ \int_{y \in S} f_r(\omega(x, y), x, \omega_o) L_i(x, \omega(x, y)) V(x, y) \frac{\cos \theta_i \cos \theta_y}{\|x - y\|^2} dA_y$$

Integrating over Surfaces

$$\begin{split} &L(x,\omega_o) \\ &= L_e(x,\omega_o) \\ &+ \int_{v \in S} f_r(\omega(x,y),x,\omega_o) L_i(x,\omega(x,y)) V(x,y) \frac{\cos\theta_i \cos\theta_y}{\|x-y\|^2} dA_y \end{split}$$

• Geometry term: $G(x,y) = V(x,y) \frac{\cos \theta_i \cos \theta_y}{\|x-y\|^2}$

- Visibility term: $V(x,y) = \begin{cases} 1, & if \ visible \\ 0, & otherwise \end{cases}$
- Integration over all surfaces: $\int_{y \in S} \cdots dA_y$ $L(x, \omega_o) = L_e(x, \omega_o) + \int_{v \in S} f_r(\omega(x, y), x, \omega_o) L_i(x, \omega(x, y)) G(x, y) dA_y$

Radiosity Algorithm

- Lambertian surface (only diffuse reflection)
 - Radiosity equation: simplified form of the rendering equation
- Dividing scene surfaces into small planar patches
 - Assumes local constancy: diffuse reflection, radiosity, visibility
 - "Radiosity" algorithms: Discretizes into linear equation

Algorithm

- Form factor: percentage of light flowing between 2 patches
- Form system of linear equations
- Iterative solution
- Discussed in details in RIS course

Radiosity Equation

Diffuse reflection ⇒ constant BRDF & emission

$$f_r(\omega(x,y), x, \omega_o) = f_r(x) \Rightarrow$$

$$\rho(x) = \int_{\Omega_+} f_r(x) \cos \theta \, d\omega = f_r(x) \iint_{\Omega_+} \cos \theta \sin \theta \, d\theta d\phi = \pi f_r(x)$$

- Reflectance factor or albedo: between [0,1]
- Direction-independent out-going radiance

$$L(x, \omega_o) = L_e(x, \omega_o) + f_r(x) \int_{y \in S} L_i(x, \omega(x, y)) G(x, y) dA_y$$

= $L_e(x) + f_r(x) E(x) = L_o(x)$

- Form factor
 - Defines percentage of light leaving dAy arriving at dA

$$F(x,y) = \frac{G(x,y)}{\pi}$$

Radiosity Equation

Radiosity

$$B = \int_{\Omega_+} L_o(x, \omega_o) \cos \theta_o \, d\omega_o = L_o \int_{\Omega_+} \cos \theta_o \, d\omega_o = \pi L_o$$
$$B(x) = \pi L_e(x) + \pi f_r(x) E(x) = B_e(x) + \rho(x) E(x)$$

Irradiance

$$E(x) = \int_{y \in S} L_i(x, \omega(x, y)) G(x, y) dA_y$$

$$= \int_{y \in S} L_o(y, -\omega(x, y)) G(x, y) dA_y = \int_{y \in S} \frac{B(y)}{\pi} G(x, y) dA_y$$

$$= \int_{y \in S} B(y) F(x, y) dA_y$$

Linear Operators

Properties

- Global linking
 - Potentially each point with each other
 - Often sparse system (occlusions)
- No consideration of volume effects!!

Linear operator

- Acts on functions like matrices act on vectors
- Superposition principle
- Scaling and addition

- Fredholm equation of 2nd kind
$$B(x) = B_e(x) + \rho(x) \int_{y \in S} F(x, y)B(y)dA_y$$

$$f(x) = g(x) + K[f(x)]$$

$$K[f(x)] = \int k(x, y) f(y) \, dy$$

$$K[af + bg] = aK[f] + bK[g]$$

Formal Solution of Integral Equations

$$B(x) = B_e(x) + \rho(x) \int_{y \in S} F(x, y)B(y)dA_y$$

Integral equation

$$B(\cdot) = B_e(\cdot) + K[B(\cdot)] \Rightarrow (I - K)[B(\cdot)] = B_e(\cdot)$$

Formal solution

$$B(\cdot) = (I - K)^{-1} [B_e(\cdot)]$$

- Neumann series
 - Converges only if |K| < 1 which is true in all physical settings

$$\frac{1}{1-x} = 1 + x + x^2 + \dots \qquad \qquad \frac{1}{I-K} = I + K + K^2 + \dots$$

$$(I - K)\frac{1}{I - K} = (I - K)(I + K + K^2 + \dots) = I + K + K^2 + \dots - (K + K^2 + \dots) = I$$

Formal Solutions (2)

Successive approximation

$$\frac{1}{I - K} B_e(\cdot) = B_e(\cdot) + K[B_e(\cdot)] + K^2[B_e(\cdot)] + \cdots$$

= $B_e(\cdot) + K[B_e(\cdot) + K[B_e(\cdot) + \cdots]]$

- Direct light from the light source
- Light which is reflected and transported at most once
- Light which is reflected and transported up to n times

$$B_1(\cdot) = B_e(\cdot)$$

$$B_2(\cdot) = B_e(\cdot) + K[B_e(\cdot)]$$

$$B_n(\cdot) = B_e(\cdot) + K[B_{n-1}(\cdot)]$$

Radiosity Algorithm

Radiosity Algorithm

Lighting Simulation

Lighting Simulation

Lighting Simulation

Wrap Up

Physical Quantities in Rendering

- Radiance
- Radiosity
- Irradiance
- Intensity
- Light Perception
- Light Source Definition
- Rendering Equation
 - Key equation in graphics (!)
 - Integral equation
 - Describes global balance of radiance