Computer Graphics

- Material Models -

Philipp Slusallek \& Arsène Pérard-Gayot

Overview

- Last time
- Light: radiance \& light sources
- Light transport: rendering equation \& formal solutions
- Today
- Reflectance properties:
- Material models
- Bidirectional Reflectance Distribution Function (BRDF)
- Reflection models
- Shading
- Next lecture
- Varying (reflection) properties over object surfaces: texturing

REFLECTANCE PROPERTIES

Appearance Samples

- How do materials reflect light?

Opaque

Translucency - subsurface scattering

Material Samples

- Anisotropic

Material Samples

- Complex surface meso-structure

Material Samples

- Fibers

Material Samples

- Photos of samples with light source at exactly the same position

How to describe materials?

- Reflection properties
- Mechanical, chemical, electrical properties
- Surface roughness
- Geometry/meso-structure
- Goal: relightable representation of appearance

Reflection Equation - Reflectance

- Reflection equation

$$
L_{o}\left(x, \omega_{o}\right)=\int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}
$$

- BRDF
- Ratio of reflected radiance to incident irradiance

$$
f_{r}\left(\omega_{i}, x, \omega_{o}\right)=\frac{d L_{o}\left(x, \omega_{o}\right)}{d E_{i}\left(x, \omega_{i}\right)}
$$

BRDF

- BRDF describes surface reflection
- for light incident from direction $\boldsymbol{\omega}_{\boldsymbol{i}}=\left(\boldsymbol{\theta}_{\boldsymbol{i}}, \boldsymbol{\varphi}_{\boldsymbol{i}}\right)$
- observed from direction $\omega_{o}=\left(\boldsymbol{\theta}_{\boldsymbol{o}}, \boldsymbol{\varphi}_{o}\right)$
- Bidirectional
- Depends on 2 directions ω_{i}, ω_{o} and position \times (6-D function)

$$
f_{r}\left(\omega_{i}, x, \omega_{o}\right)=\frac{d L_{o}\left(x, \omega_{o}\right)}{d E_{i}\left(x, \omega_{i}\right)}=\frac{d L_{o}\left(x, \omega_{o}\right)}{L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}}
$$

BRDF Properties

- Helmholtz reciprocity principle
- BRDF remains unchanged if incident and reflected directions are interchanged
- Due to physical law of time reversal

$$
f_{r}\left(\omega_{i}, \omega_{o}\right)=f_{r}\left(\omega_{o}, \omega_{i}\right)
$$

- Smooth surface: isotropic BRDF
- Reflectivity independent of rotation around surface normal
- BRDF has only 3 instead of 4 directional degrees of freedom
$f_{r}\left(\theta_{i}, x, \theta_{o}, \varphi_{o}-\varphi_{i}\right)$

=

BRDF Properties

- Characteristics
- BRDF units
- Inverse steradian: $s r^{-1}$ (not intuitive)
- Range of values: distribution function is positive, can be infinite
- From 0 (total absorption) to ∞ (reflection, δ-function)
- Energy conservation law
- No self-emission
- Possible absorption

$$
\int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) \cos \theta_{o} d \omega_{o} \leq 1, \quad \forall \omega_{i}
$$

- Reflection only at the point of entry $\left(x_{i}=x_{o}\right)$
- No subsurface scattering

Standardized Gloss Model

- Industry often uses only a subset of BRDF values
- Reflection only measured at discrete set of angles

Reflection of an Opaque Surface

Reflection of an Opaque Surface

Isotropic BRDF - 3D

- Invariant with respect to rotation about the normal
- Only depends on azimuth difference to incoming angle

$$
\begin{gathered}
f_{r}\left(\left(\theta_{i}, \varphi_{i}\right) \rightarrow\left(\theta_{o}, \varphi_{o}\right)\right) \Longrightarrow \\
f_{r}\left(\theta_{i} \rightarrow \theta_{o},\left(\varphi_{i}-\varphi_{o}\right)\right)=f_{r}\left(\theta_{i} \rightarrow \theta_{o}, \Delta \varphi\right)
\end{gathered}
$$

Homogeneous BRDF - 4D

- Homogeneous bidirectional reflectance distribution function
- Ratio of reflected radiance to incident irradiance

$$
f_{r}\left(\omega_{i} \rightarrow \omega_{o}\right)=\frac{d L_{o}\left(\omega_{o}\right)}{d E_{i}\left(\omega_{i}\right)}
$$

Spatially Varying BRDF - 6D

- Heterogeneous materials (standard model for BRDF)
- Dependent on position, and two directions
- Reflection at the point of incidence

$$
f_{r}\left(x, \omega_{i} \rightarrow \omega_{o}\right)
$$

Homogeneous BSSRDF - 6D

- Homogeneous bidirectional scattering surface reflectance distribution function
- Assumes a homogeneous and flat surface
- Only depends on the difference vector to the outgoing point

$$
f_{r}\left(\Delta x, \omega_{i} \rightarrow \omega_{o}\right)
$$

ω_{o}

BSSRDF - 8D

- Bidirectional scattering surface reflectance distribution function

$$
f_{r}\left(\left(x_{i}, \omega_{i}\right) \rightarrow\left(x_{o}, \omega_{o}\right)\right)
$$

Generalization - 9D

- Generalizations
- Add wavelength dependence

$$
f_{r}\left(\lambda,\left(x_{i}, \omega_{i}\right) \rightarrow\left(x_{o}, \omega_{o}\right)\right)
$$

ω_{o}

Generalization - 10D

- Generalizations
- Add wavelength dependence
- Add fluorescence
- Change to longer wavelength during scattering

$$
f_{r}\left(\left(x_{i}, \omega_{i}, \lambda_{i}\right) \rightarrow\left(x_{o}, \omega_{o}, \lambda_{o}\right)\right)
$$

ω_{o}

Generalization - 11D

- Generalizations
- Add wavelength dependence
- Add fluorescence (change to longer wavelength for reflection)
- Time varying surface characteristics

$$
f_{r}\left(t,\left(x_{i}, \omega_{i}, \lambda_{i}\right) \rightarrow\left(x_{o}, \omega_{o}, \lambda_{o}\right)\right)
$$

Generalization - 12D

- Generalizations

- Add wavelength dependence
- Add fluorescence (change to longer wavelength for reflection)
- Time varying surface characteristics
- Phosphorescence
- Temporal storage of light

Reflectance

- Reflectance may vary with
- Illumination angle
- Viewing angle
- Wavelength
- (Polarization, ...)
- Variations due to
- Absorption
- Surface micro-geometry
- Index of refraction / dielectric constant
- Scattering

BRDF Measurement

- Gonio-Reflectometer
- BRDF measurement
- Point light source position $\left(\theta_{i}, \varphi_{i}\right)$
- Light detector position $\left(\theta_{o}, \varphi_{o}\right)$
- 4 directional degrees of freedom
- BRDF representation
- m incident direction samples
- n outgoing direction samples
- $m^{*} n$ reflectance values (large!!!)

Stanford light gantry

Rendering from Measured BRDF

- Linearity, superposition principle
- Complex illumination: integrating light distribution against BRDF
- Sampled computation: superimposing many point light sources
- Interpolation
- Look-up of BRDF values during rendering
- Sampled BRDF must be filtered
- BRDF Modeling
- Fitting of parameterized BRDF models to measured data
- Continuous, analytic function
- No interpolation
- Typically fast evaluation

Spherical Harmonics
Red is positive, green negative [Wikipedia]

- Representation in a basis
- Most appropriate: Spherical harmonics
- Ortho-normal function basis on the sphere
- Mathematically elegant filtering, illumination-BRDF integration

BRDF Modeling

- Phenomenological approach
- Description of visual surface appearance
- Composition of different terms:
- Ideal diffuse reflection
- Lambert's law, interactions within material
- Matte surfaces
- Ideal specular reflection
- Reflection law, reflection on a planar surface
- Mirror
- Glossy reflection
- Directional diffuse, reflection on surface that is somewhat rough
- Shiny surface
- Glossy highlights

Reflection Geometry

- Direction vectors (normalize):
$-N$:
$-I$:
- V :
- $R(I)$: Reflection vector
- $R(I)=-I+2(I \cdot N) N$
- H: Halfway vector
- $H=(I+V) /|I+V|$

- Tangential surface: local plane

Ideal Specular Reflection

- Angle of reflectance equal to angle of incidence
- Reflected vector in a plane with incident ray and surface normal vector

$$
\begin{gathered}
R+I=2 \cos \theta N=2(I \cdot N) N \Rightarrow \\
R(I)=-I+2(I \cdot N) N
\end{gathered}
$$

$$
\theta_{i}=\theta_{o}
$$

$\varphi_{o}=\varphi_{i}+180^{\circ}$

Mirror BRDF

- Dirac Delta function $\boldsymbol{\delta}(\boldsymbol{x})$
$-\boldsymbol{\delta}(\boldsymbol{x})$: zero everywhere except at $x=0$
- Unit integral iff domain contains $x=0$ (else zero)

$$
\begin{gathered}
f_{r, m}\left(\omega_{i}, x, \omega_{o}\right)=\rho_{s}\left(\theta_{i}\right) \frac{\delta\left(\cos \theta_{i}-\cos \theta_{o}\right)}{\cos \theta_{i}} \delta\left(\varphi_{i}-\varphi_{o} \pm \pi\right) \\
L_{o}\left(x, \omega_{o}\right)=\int_{\Omega_{+}} f_{r, m}\left(\omega_{i}, x, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}= \\
\rho_{s}\left(\theta_{o}\right) L_{i}\left(x, \theta_{o}, \varphi_{o} \pm \pi\right)
\end{gathered}
$$

- Specular reflectance ρ_{s}
- Ratio of reflected radiance in specular direction and incoming radiance
- Dimensionless quantity between 0 and 1

$$
\rho_{s}\left(x, \theta_{i}\right)=\frac{L_{o}\left(x, \theta_{o}\right)}{L_{i}\left(x, \theta_{o}\right)}
$$

Refraction in Dielectrics

- Time required for light to travel from \boldsymbol{A} to \boldsymbol{B} through \boldsymbol{C}

$$
t_{A B}=t_{A C}+t_{C B}=\frac{\|A C\|}{c_{a}}+\frac{\|B C\|}{c_{b}}=\frac{\sqrt{\left(C_{x}-A_{x}\right)^{2}+A_{v}^{2}}}{c_{a}}+\frac{\sqrt{\left(C_{x}-B_{x}\right)^{2}+B_{u}^{2}}}{c_{b}} \quad \text { (assuming } C_{y}=0 \text {) }
$$

- Fermat's principle: light path of least traversal time

$$
\begin{aligned}
\frac{d t_{A B}}{d C_{x}} & =\frac{C_{x}-A_{x}}{c_{a} \sqrt{\left(C_{x}-A_{x}\right)^{2}+A_{y}^{2}}}+\frac{C_{x}-B_{x}}{c_{b} \sqrt{\left(C_{x}-B_{x}\right)^{2}+B_{y}^{2}}}=\frac{C_{x}-A_{x}}{c_{a}\|A C\|}+\frac{C_{x}-B_{x}}{c_{b}\|B C\|} \\
& =\frac{\sin \left(\theta_{a}\right)}{c_{a}}+\frac{-\sin \left(\theta_{b}\right)}{c_{b}}=\frac{n_{a} \sin \left(\theta_{a}\right)}{c_{0}}-\frac{n_{b} \sin \left(\theta_{b}\right)}{c_{0}}=0
\end{aligned}
$$

- Snell's law: $n_{a} \sin \left(\theta_{a}\right)=n_{b} \sin \left(\theta_{b}\right)$
- Special case possible when $\eta_{b}<\eta_{a}$

- If $\sin \left(\theta_{a}\right)>n_{b} / n_{a}$ then $n_{b}=n_{a} \frac{n_{b}}{n_{a}}<n_{a} \sin \left(\theta_{a}\right)=n_{b} \sin \left(\theta_{b}\right)$
- Which is impossible since $\sin \left(\theta_{b}\right) \leq 1$ \Rightarrow total internal reflection

Lambertian Diffuse Reflection

- Light equally likely to be reflected in any output direction (independent of input direction)
- Constant BRDF

$$
\begin{aligned}
& f_{r, d}\left(\omega_{i}, x, \omega_{o}\right)=k_{d}=\text { const } \\
& L_{o}\left(x, \omega_{o}\right)=k_{d} \int_{\Omega_{+}} L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}=k_{d} E
\end{aligned}
$$

- k_{d} : diffuse coefficient, material property [1/sr]
- For each point light source
$-L_{r, d}=k_{d} L_{i} \cos \theta_{i}=k_{d} L_{i}(\underline{\underline{\bullet}} \underline{N})$

Lambertian Objects

Self-luminous
 spherical Lambertian light source

$$
\Phi_{0} \propto L_{0} \cdot \Omega
$$

Eye-light illuminated spherical Lambertian reflector

$$
\Phi_{1} \propto L_{\mathrm{i}} \cdot \cos \theta \cdot \Omega
$$

Lambertian Objects (?)

The Sun

- Some absorption in photosphere
- Path length through photosphere longer from the Sun's rim

The Moon

- Surface covered with fine dust
- Dust visible best from slanted viewing angle
\Rightarrow Neither the Sun nor the Moon are Lambertian

"Diffuse" Reflection

- Theoretical explanation
- Multiple scattering with in the material (at very short range)
- Experimental realization
- Pressed magnesium oxide powder
- Random mixture of tiny, highly reflective particles
- Almost never valid at grazing angles of incidence
- Paint manufacturers attempt to create ideal diffuse paints

Glossy Reflection

Glossy Reflection

- Due to surface roughness
- Empirical models (phenomenological)
- Phong
- Blinn-Phong
- Physically-based models

(a)
- Blinn
- Cook \& Torrance
(b)

Phong Glossy Reflection Model

- Simple description: Cosine power lobe
$f_{r}\left(\omega_{i}, x, \omega_{o}\right)=k_{s}(R(I) \cdot V)^{k_{e}} / I \cdot N$
- Take angle to reflection direction to some

$$
-L_{r, s}=L_{i} k_{s} \cos ^{k e} \theta_{R V}
$$

- Issues

- Not energy conserving/reciprocal
- Plastic-like appearance
- Dot product \& power
- Still widely used in CG

Phong Exponent k_{e}

$$
f_{r}\left(\omega_{i}, x, \omega_{o}\right)=k_{s}(R(I) \cdot V)^{k_{e}} / I \cdot N
$$

- Determines size of highlight

- Beware: Non-zero contribution into the material !!!

Blinn-Phong Glossy Reflection

- Same idea: Cosine power lobe

$$
\begin{aligned}
& f_{r}\left(\omega_{i}, x, \omega_{o}\right)=k_{s}(H \cdot N)^{k_{e}} / I \cdot N \\
& \quad-L_{r, s}=L_{i} k_{s} \cos ^{k e} \theta_{H N}
\end{aligned}
$$

- Dot product \& power

$-\theta_{R V} \rightarrow \theta_{H N}$
- Special case: Light source, viewer far away
- I, R constant: H constant
- $\theta_{H N}$ less expensive to compute

Different Types of Illumination

- Three types of illumination

Local (without shadows)

Direct (with shadows)

Global (with all interreflecions)

- Ambient Illumination
- Global illumination is costly to compute
- Indirect illumination (through interreflections) is typically smooth
\rightarrow Approximate via a constant term $L_{i, a}$ (incoming ambient illum)
- Has no incoming direction, provide ambient reflection term k_{a}

$$
L_{o}\left(x, \omega_{o}\right)=k_{a} L_{i, a}
$$

Full Phong Illumination Model

- Phong illumination model for multiple point light sources

$$
\begin{aligned}
& L_{r}=k_{a} L_{i, a}+k_{d} \sum_{l} L_{l}\left(I_{l} \cdot N\right)+k_{s} \sum_{l} L_{l}\left(R\left(I_{l}\right) \cdot V\right)^{k_{e}}(\text { Phong }) \\
& L_{r}=k_{a} L_{i, a}+k_{d} \sum_{l} L_{l}\left(I_{l} \cdot N\right)+k_{s} \sum_{l} L_{l}\left(H_{l} \cdot N\right)^{k_{e}}(\text { Blinn })
\end{aligned}
$$

- Diffuse reflection (contribution only depends on incoming cosine)
- Ambient and Glossy reflection (Phong or Blinn-Phong)
- Typically: Color of specular reflection \boldsymbol{k}_{s} is white
- Often separate specular and diffuse color (common extension, OGL)
- Empirical model!
- Contradicts physics
- Purely local illumination
- Only direct light from the light sources, constant ambient term
- Optimization: Lights \& viewer assumed to be far away

Microfacet BRDF Model

- Physically-Inspired Models
- Isotropic microfacet collection
- Microfacets assumed as perfectly smooth reflectors
- BRDF
- Distribution of microfacets
- Often probabilistic distribution of orientation or V-groove assumption
- Planar reflection properties
- Self-masking, shadowing

Ward Reflection Model

- BRDF

$$
f_{r}=\frac{\rho_{d}}{\pi}+\frac{\rho_{s}}{\sqrt{(I \cdot N)(V \cdot N)}} \frac{\exp \left(-\frac{\sigma^{2}}{\sigma^{2}}\right)}{4 \pi \sigma^{2}}
$$

- σ standard deviation (RMS) of surface slope
- Simple expansion to anisotropic model (σ_{x}, σ_{y})
- Empirical, not physics-based
- Inspired by notion of reflecting microfacets
- Convincing results
- Good match to measured data

Cook-Torrance Reflection Model

- Cook-Torrance reflectance model
- Is based on the microfacet model
- BRDF is defined as the sum of a diffuse and a specular component:

$$
f_{r}=\kappa_{d} \rho_{d}+\kappa_{s} \rho_{s} ; \quad \rho_{d}+\rho_{s} \leq 1
$$

where ρ_{s} and ρ_{d} are the specular and diffuse coefficients.

- Derivation of the specular component κ_{s} is based on a physically derived theoretical reflectance model

Cook-Torrance Specular Term

$$
\kappa_{s}=\frac{F_{\lambda} D G}{\pi(N \cdot V)(N \cdot I)}
$$

- D : Distribution function of microfacet orientations
- G : Geometrical attenuation factor
- represents self-masking and shadowing effects of microfacets
- F_{λ} : Fresnel term
- computed by Fresnel equation
- Fraction of specularly reflected light for each planar microfacet
- N•V : Proportional to visible surface area
- N.I: Proportional to illuminated surface area

Electric Conductors (e.g. Metals)

- Assume ideally smooth surface
- Perfect specular reflection of light, rest is absorbed
- Reflectance is defined by Fresnel formula based on:
- Index of refraction η
- Absorption coefficient κ
- Both wavelength dependent

Object	η	k
Gold	0.370	2.820
Silver	0.177	3.638
Copper	0.617	2.63
Steel	2.485	3.433

- Given for parallel and perpendicular polarized light

$$
\begin{aligned}
& r_{\|}^{2}=\frac{\left(\eta^{2}+k^{2}\right) \cos \theta_{\mathrm{i}}^{2}-2 \eta \cos \theta_{\mathrm{i}}+1}{\left(\eta^{2}+k^{2}\right) \cos \theta_{\mathrm{i}}^{2}+2 \eta \cos \theta_{\mathrm{i}}+1} \\
& r_{\perp}^{2}=\frac{\left(\eta^{2}+k^{2}\right)-2 \eta \cos \theta_{\mathrm{i}}+\cos \theta_{\mathrm{i}}^{2}}{\left(\eta^{2}+k^{2}\right)+2 \eta \cos \theta_{\mathrm{i}}+\cos \theta_{\mathrm{i}}^{2}}
\end{aligned}
$$

- $\theta_{\mathrm{i}}, \theta_{\mathrm{t}}$: Angle between ray \& plane, incident \& transmitted
- For unpolarized light:

$$
F_{\mathrm{r}}=\frac{1}{2}\left(r_{\|}^{2}+r_{\perp}^{2}\right)
$$

Dielectrics (e.g. Glass)

- Assume ideally smooth surface
- Non-reflected light is perfectly transmitted: 1 - F_{r}
- They do not conduct electricity
- Fresnel formula depends on:
- Refr. index: speed of light in vacuum vs. medium
- Refractive index in incident medium $\eta_{i}=c_{0} / c_{i}$
- Refractive index in transmitted medium $\eta_{t}=c_{0} / c_{t}$
- Given for parallel and perpendicular polarized light

$$
\begin{aligned}
r_{\|} & =\frac{\eta_{\mathrm{t}} \cos \theta_{\mathrm{i}}-\eta_{\mathrm{i}} \cos \theta_{\mathrm{t}}}{\eta_{\mathrm{t}} \cos \theta_{\mathrm{i}}+\eta_{\mathrm{i}} \cos \theta_{\mathrm{t}}} \\
r_{\perp} & =\frac{\eta_{\mathrm{i}} \cos \theta_{\mathrm{i}}-\eta_{\mathrm{t}} \cos \theta_{\mathrm{t}}}{\eta_{\mathrm{i}} \cos \theta_{\mathrm{i}}+\eta_{\mathrm{t}} \cos \theta_{\mathrm{t}}}
\end{aligned}
$$

- For unpolarized light:

$$
F_{\mathrm{r}}=\frac{1}{2}\left(r_{\|}^{2}+r_{\perp}^{2}\right)
$$

Microfacet Distribution Functions

- Isotropic Distributions $D(\omega) \Rightarrow D(\alpha) \quad \alpha=\angle N, H$
$-\alpha$: angle to average normal of surface
- m : average slope of the microfacets
- Blinn:
- Torrance-Sparrow
- Gaussian
- Beckmann
- Used by Cook-Torrance

$$
\begin{aligned}
& D(\alpha)=\cos ^{-\frac{\ln 2}{\ln \cos m}}(\alpha) \\
& D(\alpha)=e^{-\ln 2\left(\frac{\alpha}{m}\right)^{2}}
\end{aligned}
$$

$$
D(\alpha)=\frac{1}{\pi m^{2} \cos ^{4} \alpha} e^{-\left(\frac{\tan \alpha}{m}\right)^{2}}
$$

Beckman Microfacet Distribution

Geometric Attenuation Factor

- V-shaped grooves
- Fully illuminated and visible

$$
G=1
$$

- Partial masking of reflected light

$$
G=\frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{V})}{(\underline{V} \cdot \underline{H})}
$$

- Partial shadowing of incident light

$$
G=\frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{I})}{(\underline{V} \cdot \underline{H})}
$$

- Final

$$
G=\min \left\{1, \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{V})}{(\underline{V} \cdot \underline{H})}, \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{I})}{(\underline{V} \cdot \underline{H})}\right\}
$$

Comparison Phong vs. Torrance
Phong:

(a)

(b)

(d)

SHADING

What is necessary?

- View point position
- Light source description
- Reflectance model
- Surface normal / local coordinate frame

Surface Normals - Triangle Mesh

- Most simple: Constant Shading
- Fixed color per polygon/triangle
- Shading Model: Flat Shading
- Single per-surface normal
- Single color per polygon
- Evaluated at one of the vertices (\rightarrow OGL) or at center

Surface Normals - Triangle Mesh

- Shading Model: Gouraud shading

- Per-vertex normal
- Can be computed from adjacent triangle normals (e.g. by averaging)
- Linear interpolation of the shaded colors
- Computed at all vertices and interpolated
- Often results in shading artifacts along edges
- Mach Banding (i.e. discontinuous 1st derivative)
- Flickering of highlights (when one of the normal generates strong reflection)
$L_{x} \sim f_{r}\left(\omega_{o}, n_{x}, \omega_{i}\right) L_{i} \cos \theta_{i}$ $L_{p}=\lambda_{1} L_{a}+\lambda_{2} L_{b}+\lambda_{3} L_{c}$
- Barycentric interpolation within triangle

Surface Normals - Triangle Mesh

- Shading Model: Phong shading
- Linear interpolation of the surface normal
- Shading is evaluated at every point separately
- Smoother but still off due to hit point offset from apparent surface

$$
\begin{gathered}
n_{p}=\frac{\lambda_{1} n_{1}+\lambda_{2} n_{2}+\lambda_{3} n_{3}}{\left\|\lambda_{1} n_{1}+\lambda_{2} n_{2}+\lambda_{3} n_{3}\right\|} \\
L_{p} \sim f_{r}\left(\omega_{o}, n_{p}, \omega_{i}\right) L_{i} \cos \theta_{i}
\end{gathered}
$$

- Barycentric interpolation within triangle

[wikipedia]

Problems in Interpolated Shading

- Issues

- Polygonal silhouette may not match the smooth shading
- Perspective distortion
- Interpolation in 2-D screen space rather than world space (==> later)
- Orientation dependence
- Only for polygons
- Not with triangles (here linear interpolation is rotation-invariant)
- Shading discontinuities at shared vertices (T-edges)
- Unrepresentative normal vectors

Occlusions

- The point on the surface might be in shadow
- Rasterization (OpenGL):
- Not easily done
- Can use shadow map or shadow volumes (\rightarrow later)
- Ray tracing
- Simply trace ray to light source and test for occlusion

Area Light sources

- Typically approximated by sampling
- Replacing it with some point light sources
- Often randomly sampled
- Cosine distribution of power over angular directions

