
Arsène Pérard-Gayot

(Slides by Piotr Danilewski)

Computer Graphics

- Splines -

CURVES

Curves

𝑦 = 𝑓 𝑥Explicit

Implicit 𝐹 𝑥, 𝑦 = 0

Parametric

𝑓:ℝ → ℝ

𝐹:ℝ2 → ℝ

𝑓𝑥 𝑡 𝑓𝑦 𝑡

𝑓 𝑡

𝑓𝑥, 𝑓𝑦: ℝ → ℝ

𝑓:ℝ → ℝ2

typically:

𝑡 ∈ 0,1

𝛾 = 𝑥, 𝑓 𝑥

𝛾 = 𝑥, 𝑦 : 𝐹 𝑥, 𝑦 = 0

𝛾 =

𝑥, 𝑦 : ∃𝑡 ∈ ℝ:

𝑓𝑥 𝑡 = 𝑥

𝑓𝑦 𝑡 = 𝑦

𝑦 = 1 − 𝑥2

𝑥2 + 𝑦2 = 0

𝑥 𝑡 = cos 𝑡
𝑦 𝑡 = sin 𝑡
𝑡 ∈ 0,2𝜋

Polynomial curves

𝑥 𝑡 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 +⋯
𝑦 𝑡 = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡

2 + 𝑏3𝑡
3 +⋯

𝑧 𝑡 = 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡
2 + 𝑐3𝑡

3 +⋯

• Avoids complicated functions (e.g. pow, exp, sin, sqrt)

• Use simple polynomials of low degree

• Flexible, easy to use

𝑃 𝑡 =

𝑥 𝑡
𝑦 𝑡

𝑧 𝑡

=

𝑖=0

𝑛

𝑡𝑖 ⋅ 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖

𝑃 𝑡 = 𝑡𝑛 𝑡𝑛−1 ⋯ 1 ⋅

𝑎𝑛 𝑏𝑛 𝑐𝑛
𝑎𝑛−1 𝑏𝑛−1 𝑐𝑛−1
⋮ ⋮ ⋮
𝑎0 𝑏0 𝑐0

monomial

degree

monomial basis

Coefficients ∈ℝ3

• n coordinates

• each coordinate is ℝ3

Derivatives

• Tangent vector

𝑃 𝑡 = 𝑡𝑛 𝑡𝑛−1 ⋯ 𝑡 1 ⋅

𝑎𝑛 𝑏𝑛 𝑐𝑛
𝑎𝑛−1 𝑏𝑛−1 𝑐𝑛−1
⋮ ⋮ ⋮
𝑎0 𝑏0 𝑐0

𝑃′ 𝑡 = 𝑛𝑡𝑛−1 𝑛 − 1 𝑡𝑛−1 ⋯ 1 0 ⋅

𝑎𝑛 𝑏𝑛 𝑐𝑛
𝑎𝑛−1 𝑏𝑛−1 𝑐𝑛−1
⋮ ⋮ ⋮
𝑎0 𝑏0 𝑐0

Continuity

𝛾1

𝛾2

𝛾1, 𝛾2: [0,1] → ℝ
𝑑

Continuity and smoothness between parametric curves

𝛾1

𝛾2

Not continuous G0- C0-continuous

𝛾1 1 = 𝛾2 0

Continuity

𝛾1

𝛾2

𝛾1, 𝛾2: [0,1] → ℝ
𝑑

Continuity and smoothness between parametric curves

𝛾1
′ 1

𝛾2
′ 0

G1-continuous

G0 + tangent vectors parallel

𝛾1
′ 1 = 𝑝𝛾2

′ 0 , 𝑝 ∈ ℝ+

𝛾1

𝛾2

𝛾1
′ 1

𝛾2
′ 0

C1-continuous

C0 + tangent vectors parallel

𝛾1
′ 1 = 𝛾2

′ 0

Continuity

𝛾1, 𝛾2: [0,1] → ℝ
𝑑

Continuity and smoothness between parametric curves

G2-continuous

G1 + 𝛾1
′′ 1 = 𝑝𝛾2

′′ 0 , 𝑝 ∈ ℝ+

C2-continuous

C1 + 𝛾1
′′ 1 = 𝛾2

′′ 0

⋮ ⋮

G2 – smooth reflections

LAGRANGE INTERPOLATION

Lagrange Interpolation

𝑡𝑖 , 𝑝𝑖 , 𝑡 ∈ ℝ, 𝑝𝑖 ∈ ℝ
𝑑

Given a set of points:

Find a polynomial 𝑃 such that:

∀𝑖 𝑃 𝑡𝑖 = 𝑝𝑖

𝑡1, 𝑝1

𝑡2, 𝑝2

𝑡3, 𝑝3

Lagrange Interpolation

𝑡𝑖 , 𝑝𝑖 , 𝑡 ∈ ℝ, 𝑝𝑖 ∈ ℝ
𝑑

Given a set of n points:

Find a polynomial 𝑃 such that:

∀𝑖 𝑃 𝑡𝑖 = 𝑝𝑖

𝑡1, 𝑝1

𝑡2, 𝑝2

𝑡3, 𝑝3

For each point associate a

Lagrange basis polynomial:

𝐿𝑖
𝑛 𝑡 =

𝑗
𝑗≠𝑖

𝑡 − 𝑡𝑗

𝑡𝑖 − 𝑡𝑗

𝐿𝑖
𝑛 𝑡𝑗 = 0

𝐿𝑖
𝑛 𝑡𝑖 = 1

(𝑖 ≠ 𝑗)

𝑝2𝐿2
𝑛 𝑡𝑡1, 0

𝑡3, 0

Lagrange Interpolation

𝑡𝑖 , 𝑝𝑖 , 𝑡 ∈ ℝ, 𝑝𝑖 ∈ ℝ
𝑑

Given a set of n points:

Find a polynomial 𝑃 such that:

∀𝑖 𝑃 𝑡𝑖 = 𝑝𝑖

𝑡1, 𝑝1

𝑡2, 𝑝2

𝑡3, 𝑝3

For each point associate a

Lagrange basis polynomial:

𝐿𝑖
𝑛 𝑡 =

𝑗
𝑗≠𝑖

𝑡 − 𝑡𝑗

𝑡𝑖 − 𝑡𝑗

Add the Lagrange basis with

points as weights:

𝑃 𝑡 =

𝑖

𝐿𝑖
𝑛 𝑡 ⋅ 𝑝𝑖

𝑃 𝑡 = 𝐿0
𝑛 𝐿1
𝑛 ⋯ 𝐿𝑛−1

𝑛

𝑝0𝑥 𝑝0𝑦 𝑝0𝑧
𝑝1𝑥 𝑝1𝑦 𝑝1𝑧
⋮ ⋮ ⋮
𝑝𝑛−1𝑥 𝑝𝑛−1𝑦 𝑝𝑛−1𝑧

Lagrange basis

Lagrange Interpolation

𝑡𝑖 , 𝑝𝑖 , 𝑡 ∈ ℝ, 𝑝𝑖 ∈ ℝ
𝑑

Given a set of n points:

Find a polynomial 𝑃 such that:

∀𝑖 𝑃 𝑡𝑖 = 𝑝𝑖

For each point associate a

Lagrange basis polynomial:

𝐿𝑖
𝑛 𝑡 =

𝑗
𝑗≠𝑖

𝑡 − 𝑡𝑗

𝑡𝑖 − 𝑡𝑗

𝑃 𝑡 =

𝑖

𝑝𝑖𝐿𝑖
𝑛 𝑡

Given 2 points

𝐿0
2 𝑡 =

𝑡 − 𝑡1
𝑡0 − 𝑡1

𝐿1
2 𝑡 =

𝑡 − 𝑡0
𝑡1 − 𝑡0

𝑃 𝑡 = linear interpolation

Given 3 points

𝐿0
3 𝑡 =

𝑡 − 𝑡1
𝑡0 − 𝑡1

𝑡 − 𝑡2
𝑡0 − 𝑡2

…

𝑃 𝑡 = quadratic interpolation
Add the Lagrange basis with

points as weights:

Problems
•Problems with a single polynomial
–Degree depends on the number of interpolation constraints

–Strong overshooting for high degree (n > 7)

–Problems with smooth joints

–Numerically unstable

–No local changes

SPLINES

Splines
•Functions for interpolation & approximation
–Standard curve and surface primitives in geometric modeling

–Key frame and in-betweens in animations

–Filtering and reconstruction of images

•Historically
–Name for a tool in ship building

•Flexible metal strip that tries to stay straight

–Within computer graphics:

•Piecewise polynomial function

𝑃 𝑡 𝑄 𝑡 𝑅 𝑡 𝑆 𝑡

Linear Interpolation
- Defined by two points: 𝑝1, 𝑝2
- Searching for 𝑃 𝑡 such that:

- 𝑃 0 = 𝑝1
- 𝑃 1 = 𝑝2
- Degree of P is 1

𝑇1 𝑡 = 1 − 𝑡

𝑇2 𝑡 = 𝑡

𝑃 𝑡 = 𝑝1𝑇1 𝑡 + 𝑝2𝑇2(𝑡) 𝑃 𝑡 𝑇 = 1 − 𝑡 𝑡
𝑝1
𝑇

𝑝2
𝑇

Linear basis

1

1

𝑡

𝑇1 𝑇2
Basis:

Linear Interpolation

1 − 𝑡 𝑡

Linear basis

𝑡 1

monomial basis

0 1
1 1

−1 1
1 0

𝑃 𝑡 𝑇 = 𝑀 ⋅
−1 1
1 0

⋅
𝑝1
𝑇

𝑝2
𝑇

Linear Interpolation

C0-continuous

𝑃 𝑡 = 𝑀 ⋅
−1 1
1 0

⋅
𝑝1
𝑝2

Cubic Hermite Interpolation
- Defined by

- two points: 𝑝1, 𝑝2
- two tangents: 𝑡1, 𝑡2

- Searching for 𝑃 𝑡 such that:

- 𝑃 0 = 𝑝1
- 𝑃′ 0 = 𝑡1
- 𝑃′ 1 = 𝑡2
- 𝑃 1 = 𝑝2
- Degree of P is 3

𝐻0
3 𝑡 =?
𝐻1
3 𝑡 =?
𝐻2
3 𝑡 =?
𝐻3
3 𝑡 =?

Basis:

Cubic Hermite Interpolation

𝐻0
3 𝑡 =?
𝐻1
3 𝑡 =?
𝐻2
3 𝑡 =?
𝐻3
3 𝑡 =?

Basis:

𝐻0
3 𝑡 𝐻1

3 𝑡 𝐻2
3 𝑡 𝐻3

3 𝑡𝑡3 𝑡2 𝑡 1

𝐻

𝐻−1

𝑃 𝑡 𝑇 = 𝑀 ⋅ 𝐻 ⋅

𝑝1
𝑇

𝑡1
𝑇

𝑡2
𝑇

𝑝2
𝑇

= 𝑀 ⋅ 𝐻 ⋅ 𝐺

- Defined by

- two points: 𝑝1, 𝑝2
- two tangents: 𝑡1, 𝑡2

- Searching for 𝑃 𝑡 such that:

- 𝑃 0 = 𝑝1
- 𝑃′ 0 = 𝑡1
- 𝑃′ 1 = 𝑡2
- 𝑃 1 = 𝑝2
- Degree of P is 3

Cubic Hermite Interpolation
𝑃 𝑡 𝑇 = 𝑡3 𝑡2 𝑡1 1 ⋅ 𝐻 ⋅ 𝐺

𝑝1
𝑇 = 𝑃 0 𝑇 = 0 0 0 1 ⋅ 𝐻 ⋅ 𝐺

𝑝2
𝑇 = 𝑃 1 𝑇 = 1 1 1 1 ⋅ 𝐻 ⋅ 𝐺

𝑡1
𝑇 = 𝑃′ 0 𝑇 = 0 0 1 0 ⋅ 𝐻 ⋅ 𝐺

𝑃′ 𝑡 𝑇 = 3𝑡2 2𝑡 1 0 ⋅ 𝐻 ⋅ 𝐺

𝑡2
𝑇 = 𝑃′ 1 𝑇 = 3 2 1 0 ⋅ 𝐻 ⋅ 𝐺

𝑝1
𝑇

𝑡1
𝑇

𝑡2
𝑇

𝑝2
𝑇

=

0 0 0 1
0 0 1 0
3 2 1 0
1 1 1 1

⋅ 𝐻 ⋅

𝑝1
𝑇

𝑡1
𝑇

𝑡2
𝑇

𝑝2
𝑇

- Defined by

- two points: 𝑝1, 𝑝2
- two tangents: 𝑡1, 𝑡2

- Searching for 𝑃 𝑡 such that:

- 𝑃 0 = 𝑝1
- 𝑃′ 0 = 𝑡1
- 𝑃′ 1 = 𝑡2
- 𝑃 1 = 𝑝2
- Degree of P is 3

Cubic Hermite Interpolation

𝐻 =

0 0 0 1
0 0 1 0
3 2 1 0
1 1 1 1

−1

=

2 1 1 −2
−3 −2 −1 3
0 1 0 0
1 0 0 0

- Defined by

- two points: 𝑝1, 𝑝2
- two tangents: 𝑡1, 𝑡2

- Searching for 𝑃 𝑡 such that:

- 𝑃 0 = 𝑝1
- 𝑃′ 0 = 𝑡1
- 𝑃′ 1 = 𝑡2
- 𝑃 1 = 𝑝2
- Degree of P is 3

𝐻0
3 𝐻3

3

𝐻2
3

𝐻1
3

Cubic Hermite Interpolation

𝐻0
3 𝑡 = 1 − 𝑡 2(1 + 2𝑡)
𝐻1
3 𝑡 = 𝑡 1 − 𝑡 2

𝐻2
3 𝑡 = 𝑡2 𝑡 − 1
𝐻3
3 𝑡 = 3 − 2𝑡 𝑡2

Basis:

𝐻0
3 𝑡 𝐻1

3 𝑡 𝐻2
3 𝑡 𝐻3

3 𝑡

- Defined by

- two points: 𝑝1, 𝑝2
- two tangents: 𝑡1, 𝑡2

- Searching for 𝑃 𝑡 such that:

- 𝑃 0 = 𝑝1
- 𝑃′ 0 = 𝑡1
- 𝑃′ 1 = 𝑡2
- 𝑃 1 = 𝑝2
- Degree of P is 3

𝐻 =

2 1 1 −2
−3 −2 −1 3
0 1 0 0
1 0 0 0

Cubic Hermite Interpolation

G1-continuous

C1-continuous

Bézier
- Defined by

- 𝑏0 - start point

- 𝑏3 - end point

- 𝑏1, 𝑏2 - control points that are

approximated

- Searching for 𝑃 𝑡 such that:

- 𝑃 0 = 𝑏0
- 𝑃′ 0 = 3 𝑏1 − 𝑏0
- 𝑃′ 1 = 3 𝑏3 − 𝑏2
- 𝑃 1 = 𝑏3
- Degree of P is 3

Bézier
- Defined by

- 𝑏0 - start point

- 𝑏3 - end point

- 𝑏1, 𝑏2 - control points that are

approximated

- Searching for 𝑃 𝑡 such that:

- 𝑃 0 = 𝑏0
- 𝑃′ 0 = 3 𝑏1 − 𝑏0
- 𝑃′ 1 = 3 𝑏3 − 𝑏2
- 𝑃 1 = 𝑏3
- Degree of P is 3

𝑝1
𝑇

𝑡1
𝑇

𝑡2
𝑇

𝑝2
𝑇

=

1 0 0 0
−3 3 0 0
0 0 −3 3
0 0 0 1

𝑏0
𝑇

𝑏1
𝑇

𝑏2
𝑇

𝑏3
𝑇

𝑃 𝑡 𝑇 = 𝑀 ⋅ 𝐻 ⋅ 𝑇𝐵𝐻 ⋅ 𝐺

Bézier
- Defined by

- 𝑏0 - start point

- 𝑏3 - end point

- 𝑏1, 𝑏2 - control points that are

approximated

- Searching for 𝑃 𝑡 such that:

- 𝑃 0 = 𝑏0
- 𝑃′ 0 = 3 𝑏1 − 𝑏0
- 𝑃′ 1 = 3 𝑏3 − 𝑏2
- 𝑃 1 = 𝑏3
- Degree of P is 3

𝐵 = 𝐻 ⋅ 𝑇𝐵𝐻 =

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

𝐵0
3 𝑡 = 1 − 𝑡 3

𝐵1
3 𝑡 = 3 1 − 𝑡 2𝑡
𝐵2
3 𝑡 = 3 1 − 𝑡 𝑡2

𝐵3
3 𝑡 = 𝑡3

Basis:

𝐵0
3

𝐵1
3
𝐵2
3

𝐵3
3

Bernstein polynomial:

𝐵𝑖
𝑛 𝑡 =

𝑛
𝑖
𝑡𝑖 1 − 𝑡 𝑛−𝑖 𝑃 𝑡 =

𝑖

𝑏𝑖𝐵𝑖
𝑛 𝑡

Bézier properties
•Advantages:

•End point interpolation

•Tangents explicitly specified

•Smooth joints are simple

–P3, P4, P5 collinear G1 continuous

–P5-P4=P4-P3 C1 continuous

•Geometric meaning of control points

•Affine invariance

•Convex hull property

–For 0<t<1: Bi(t) 0

•Symmetry: Bi(t) = Bn-i(1-t)

•Disadvantages
•Smooth joints need to be maintained explicitly

–Automatic in B-Splines (and NURBS)

DeCasteljau Algorithm

Recursive point computation:

𝐵𝑖
𝑛 𝑡 =

𝑛
𝑖
𝑡𝑖 1 − 𝑡 𝑛−𝑖 = 𝑡𝐵𝑖−1

𝑛−1 𝑡 + 1 − 𝑡 𝐵𝑖
𝑛−1 𝑡

𝑃 𝑡 =

𝑖

𝑏𝑖𝐵𝑖
𝑛 𝑡Bernstein polynomial defined recursively:

𝑏𝑖
0 𝑡 = 𝑏𝑖
𝑏𝑖
𝑘+1 𝑡 = 𝑡𝑏𝑖+1

𝑘 𝑡 + 1 − 𝑡 𝑏𝑖
𝑘 𝑡

𝑖

𝑏𝑖
𝑘 𝑡 𝐵𝑖

𝑛−𝑘 𝑡 =

𝑖

𝑏𝑖
𝑘 𝑡 𝑡𝐵𝑖−1

𝑛−𝑘−1 𝑡 + 𝑏𝑖
𝑘 𝑡 1 − 𝑡 𝐵𝑖

𝑛−𝑘−1 𝑡 =

𝑖

𝑏𝑖+1
𝑘 𝑡 𝑡𝐵𝑖

𝑛−𝑘−1 𝑡 + 𝑏𝑖
𝑘 𝑡 1 − 𝑡 𝐵𝑖

𝑛−𝑘−1 𝑡 =

𝑖

𝑏𝑖
𝑘+1 𝑡 𝐵𝑖

𝑛−𝑘−1 𝑡
𝑃 𝑡 = ⋯ = 𝑏0

𝑛 𝑡

DeCasteljau Algorithm

t= 0.5

Catmull-Rom-Splines
•Goal
–Smooth (C1)-joints between (cubic) spline segments

•Algorithm
–Tangents given by neighboring points Pi-1 Pi+1

–Construct (cubic) Hermite segments

•Advantage
–Arbitrary number of control points

–Interpolation without overshooting

–Local control

Catmull-Rom-Splines
- Each segment defined by

- 𝑐1 - start point

- 𝑐2 - end point

- 𝑐0, 𝑐3 - neighbor segment points

- Searching for 𝑃 𝑡 such that:

- 𝑃 0 = 𝑐1
- 𝑃′ 0 =

1

2
𝑐2 − 𝑐0

- 𝑃′ 1 =
1

2
𝑐3 − 𝑐1

- 𝑃 1 = 𝑐2
- Degree of P is 3

Catmull-Rom-Splines
- Each segment defined by

- 𝑐1 - start point

- 𝑐2 - end point

- 𝑐0, 𝑐3 - neighbor segment points

- Searching for 𝑃 𝑡 such that:

- 𝑃 0 = 𝑐1
- 𝑃′ 0 =

1

2
𝑐2 − 𝑐0

- 𝑃′ 1 =
1

2
𝑐3 − 𝑐1

- 𝑃 1 = 𝑐2
- Degree of P is 3

𝑝1
𝑇

𝑡1
𝑇

𝑡2
𝑇

𝑝2
𝑇

=

0 1 0 0

−
1

2
0
1

2
0

0 −
1

2
0
1

2
0 0 1 0

𝑐0
𝑇

𝑐1
𝑇

𝑐2
𝑇

𝑐3
𝑇

𝑃 𝑡 𝑇 = 𝑀 ⋅ 𝐻 ⋅ 𝑇𝐶𝐻 ⋅ 𝐺

Catmull-Rom-Splines
- Each segment defined by

- 𝑐1 - start point

- 𝑐2 - end point

- 𝑐0, 𝑐3 - neighbor segment points

- Searching for 𝑃 𝑡 such that:

- 𝑃 0 = 𝑐1
- 𝑃′ 0 =

1

2
𝑐2 − 𝑐0

- 𝑃′ 1 =
1

2
𝑐3 − 𝑐1

- 𝑃 1 = 𝑐2
- Degree of P is 3

𝐶 = 𝐻 ⋅ 𝑇𝐵𝐻 =
1

2

−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0

𝐶0 𝑡 = −
1

2
𝑡 𝑡 − 1 2

𝐶1 𝑡 =
1

2
𝑡 − 1 (3𝑡2 − 2𝑡 − 2)

𝐶2 𝑡 = −
1

2
𝑡 3𝑡2 − 4𝑡 − 1

𝐶3 𝑡 =
1

2
𝑡2 𝑡 − 1

Basis:

Catmull-Rom-Splines
•Catmull-Rom-Spline
–Piecewise polynomial curve

–Four control points per segment

–For n control points we obtain (n-3) polynomial segments

•Application
–Smooth interpolation of a given sequence of points

–Key frame animation, camera movement, etc.

–Control points should be equidistant in time

Choice of Parameterization
•Problem
–Often only the control points are given

–How to obtain a suitable parameterization ti ?

•Example: Chord-Length Parameterization

–Arbitrary up to a constant factor

»Warning
–Distances are not affine invariant !

–Shape of curves changes under transformations !!

𝑡0 = 0

𝑡𝑖 =

𝑗=1

𝑖

𝑑𝑖𝑠𝑡 𝑃𝑖 − 𝑃𝑖−1

Choice of Parameterization
•Chord-Length versus uniform Parameterization
–Analog: Think P(t) as a moving object with mass that may overshoot

Uniform

Chord-Length

