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CURVES



Curves

Explicit y = f(x) ffR->R
Implicit F(x,y)=0 F:R?->R

Parametric f.(t) f,(t) f.f,R->R
f(t) f:R - R?

typically:
t € [0,1]

vy ={(xf(x))

y ={(,y):F(x,y) =0}

.

(x,y):3t € R:
fo(t) = x
fy(t) =Yy

|

y=+1-—x2
x?+y2=0

x(t) = cos(t)
y(t) = sin(t)
t € [0,2m]




Polynomial curves

« Avoids complicated functions (e.g. pow, exp, sin, sqrt)
« Use simple polynomials of low degree

* Flexible, easy to use

|—degree
x(t) = ag + ait + at* + azt> + -

y(t) - bo + blt + bztz + b3t3 + -
Z(t) = Cp + Clt +|C2t2 + C3t3 + -

L—monomial
x(t) n
PO = y(®) | = ) ¢ (ay by,
z(t) i=0
monomial basis — an b, Cn
(o) =[em -t .. 7| %t bp-1  Cn—y |——Coeflicients € R’
Ao bo Co

* n coordinates
« each coordinate is R3




Derivatives

* Tangent vector

aTl bn
P(t) = (en ¢n1 o ¢ 1)-<“’11 b1
Ao by

P't) = mt"* (n—-Dt"t - 1 0)-( .

an bn

An-1 bn—l

Ao by




Continuity

Continuity and smoothness between parametric curves

Y1,v2:[0,1] » R4

Vi V1

V2

V2

Not continuous GO- CO9-continuous
¥1(1) = y,(0)




Continuity

Continuity and smoothness between parametric curves

Y1,v2:[0,1] » R4

Y1 (1)

Gl-continuous Cl-continuous

G° + tangent vectors parallel CO + tangent vectors parallel
y1(1) = py;(0),p € R, vi(1) = y4(0)




Continuity

Continuity and smoothness between parametric curves

Y1,v2:[0,1] » R4

G2-continuous C2-continuous
Gl+y{(1) = py,/'(0),p € Ry Cl+y(1) =y, (0)
° °
° °
° °

G2 — smooth reflections




LAGRANGE INTERPOLATION



Lagrange Interpolation

Given a set of points:
(t;,p)),t € R p; € RY
Find a polynomial P such that:

Vi P(t;) = p;

(tZJ pZ)




Lagrange Interpolation

Given a set of n points:
(t;,p)),t € R p; € RY

Find a polynomial P such that:
Vi P(t;) = p;

For each point associate a
Lagrange basis polynomial:

(tlr pl)

(t3,p3)




Lagrange Interpolation

Given a set of n points:
(ti; pi))t € ]R, pi € ]Rd
Find a polynomial P such that:

Vi P(t;) = p;
For each point associate a
Lagrange basis polynomial:
(t1,p2) (£3.P5)
Add the Lagrange basis with
points as weights: Poy  Poy  Pog
P1 P1 P1
P(t) = [Lg Lq' L?i—l) :x :y :Z

P(O) = ) 1}®)

Pn-1x Pn-15, Pn-1,




Lagrange Interpolation

Given a set of n points: Given 2 points
(ti; pi)) t €R, pi € Rd
Find a polynomial P such that:

Vi P(t;) = p;

For each point associate a

Lagrange basis polynomial: (t) = linear interpolation

Given 3 points

E——

Add the Lagrange basis with (t) = quadratic interpolation

points as weights:

P(O) = ) pill(®




Problems

Problems with a single polynomial

—Degree depends on the number of interpolation constraints
—Strong overshooting for high degree (n > 7)

—Problems with smooth joints

—Numerically unstable

—No local changes

Lg(u)l




SPLINES



Splines

Functions for interpolation & approximation
—Standard curve and surface primitives in geometric modeling
—Key frame and in-betweens in animations

—Filtering and reconstruction of images

*Historically

—Name for a tool in ship building
*Flexible metal strip that tries to stay straight
—Within computer graphics:

*Piecewise polynomial function

P(t) Q(t) R(t) S(t)




Linear Interpolation

- Defined by two points: p,, »,
- Searching for P(t) such that:

- P(0) =p,
- P(1) =p,
- Degreeof Pis 1

Basis:

P(t) = p1T1(t) + p T2 ()

P =|(

i

P1
P2

)




Linear Interpolation

T
POT=M- (;T




Linear Interpolation

Py =m-(7" ) ()

CO-continuous




Cubic Hermite Interpolation

- Defined by
- two points: p4,p,
- two tangents: ¢4, t,
- Searchlng for P(t) such that:
P(0) = p,
- P'(0) =t
- P'(1) =t,
- P(1) =p;
- Degree of Pis 3

Basis:




Cubic Hermite Interpolation

- Defined by
- two points: p4,p,
- two tangents: ¢, t,
- Searchlng for P(t) such that:

P(O)—p1 /\
- P'(0) =t

- Pl(l) == tz
- P(1) =p,
- Degree of Pis 3 \/
Basis:
2
t
P(t)T == tT - M .
2




Cubic Hermite Interpolation

- Defined by POT=(3 ¢2 ¢! 1)-H-G

- wo points: py, p; P() =Btz 2t 1 0)-H-G
- two tangentS: t1;t2

- Searching for P(t) such that:

- PO =p

: P’(0)=;l pi =P(0)"=(0 0 0 1)-H-G
- P =t ,

- P(1)=p22 ti =P'(0)"=0 0 1 0)-H-G

- Degree of Pis 3 tT=P'(D)T=3 2 1 0)-H-G

pI=P()"=01 1 1 1)-H-G

1 0 0 0 1 p1
ti|_(0o 0 10}, [t
tT ] 13 2 1 0 tT
T 1111 T




Cubic Hermite Interpolation

- Defined by
- two points: p4,p,
- two tangents: ¢4, t,
- Searchlng for P(t) such that:
P(0) = p,
- P'(0) =t
- P'(1) =t,
- P(1) =p;
- Degree of Pis 3

_ W O O
=N O O




Cubic Hermite Interpolation

- Defined by
- two points: p4,p,
- two tangents: ¢, t,
- Searchlng for P(t) such that:
P(0) = p,
- P'(0) =t
- P'(1) = L f(t)
- P(1) =p;
- Degree of Pis 3

Basis:




Cubic Hermite Interpolation

y()
4 Tangent vector

direction R, at point
P,; magnitude varies
for each curve

Tangent vector
direction R, at point
P,; magnitude fixed l

—I.‘-U

for each curve

Gl-continuous
Cl-continuous

O
A Ay

» X(I)

> X(t)




Bézier

- Defined by
- by - start point
- b5 - end point
- by, b, - control points that are
approximated
- Searching for P(t) such that:
- P(0) = b,
- P'(0) = 3(191 - bo)
- P'(1) = 3(b3 - bz)
- P(1) = by
- Degree of Pis 3

q‘(s)

o

qlu?




Bézier

- Defined by
- by - start point
- b5 - end point
- by, b, - control points that are
approximated
- Searching for P(t) such that:
- P(0) = b,
- P'(0) = 3(b1 - bo)
- P'(1) = 3(193 - bz)
- P(1) = by
- Degree of Pis 3

q‘(s)

o

- o,
qlu?
T
0 0 o0\ /bo
3 0 0])|»F
0 -3 3|57
O 0 1 bT
3




Bézier

Defined by

- by - start point

- b5 - end point

- by, b, - control points that are

approximated

Searching for P(t) such that:

- P(0) = b,

- P'(0) = 3(b1 - bo)

- P'(1) = 3(193 - bz)

- P(1) = by

- Degree of Pis 3

Basis:

Bernstein polynomial:

f(t)
A

(1)

O O O




Bézier properties

Advantages:
*End point interpolation
*Tangents explicitly specified
*Smooth joints are simple
—P;, P,, P collinear - G1 continuous
—P.-P,=P,-P, - C!continuous
*Geometric meaning of control points
Affine invariance
«Convex hull property
—For O<t<1: Bi(t) > 0 i
*Symmetry: Bi(t) = B,(1-t)

Disadvantages
*Smooth joints need to be maintained explicitly
—Automatic in B-Splines (and NURBS)




DeCasteljau Algorithm

Bernstein polynomial defined recursively: P(t) = Z b;BI*(t)

BR(t) = () ti(1 = "t = eBPH(E) + (1 — DBP (D)

Recursive point computation:
blo (t) — bi
bIFH(t) = tbf541(8) + (1 — )b (t)

Z bEOBI () =
Z BE(E)tBK1(t) + bE(£)(1 — £)BIF1(¢) =
z bif (VLB (D) + b (D1 = OB () =

PN AROL0
i P(t) = = by (1)




DeCasteljau Algorithm




Catmull-Rom-Splines

*Goal
—Smooth (C1)-joints between (cubic) spline segments

*Algorithm

—Tangents given by neighboring points P, ; P,
—Construct (cubic) Hermite segments
Advantage

—Arbitrary number of control points

—Interpolation without overshooting
—Local control




Catmull-Rom-Splines

- Each segment defined by
- ¢4 - Start point
- ¢, - end point
- Cp, C3 - Neighbor segment points
- Searchlng for P(t) such that:
P(0) = 01

- P(0) =5 (e~ o)
- P'(D) =5(c5— 1)

- P(l) = Cy
- Degree of Pis 3




Catmull-Rom-Splines

- Each segment defined by

- ¢4 - Start point

- ¢, - end point

- Cp, C3 - Neighbor segment points
- Searching for P(t) such that:

- P(0)=¢

- P'(0) =5 (c; — o)
- P'(1) =3(c3—c)

- P(l) = Cy
- Degree of Pis 3




Catmull-Rom-Splines

- Each segment defined by

c, - Start point
c, - end point
o, C3 - Neighbor segment points

- Searching for P(t) such that:

P(0) =
P'(0) =3 (c; — o)
P'(1) =5 (c3 — 1)

P(l) = Cy
Degree of P is 3

Basis:




Catmull-Rom-Splines

Catmull-Rom-Spline
—Piecewise polynomial curve

—Four control points per segment
—For n control points we obtain (n-3) polynomial segments

*Application

—Smooth interpolation of a given sequence of points
—Key frame animation, camera movement, etc.
—Control points should be equidistant in time




Choice of Parameterization

*Problem
—QOften only the control points are given
—How to obtain a suitable parameterization t; ?

Example: Chord-Length Parameterization
tp =0

l
t; = Z diSt(Pi - Pi—l)
j=1

—Arbitrary up to a constant factor

»Warning
—Distances are not affine invariant !
—Shape of curves changes under transformations !!




Choice of Parameterization

Chord-Length versus uniform Parameterization
—Analog: Think P(t) as a moving object with mass that may overshoot
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