Computer Graphics

- Splines -

Arsène Pérard-Gayot

(Slides by Piotr Danilewski)

CURVES

Curves

Explicit

$$
y=f(x) \quad f: \mathbb{R} \rightarrow \mathbb{R} \quad \gamma=\{(x, f(x))\}
$$

$$
\gamma=\{(x, y): F(x, y)=0\} \quad x^{2}+y^{2}=0
$$

Parametric $f_{x}(t) \quad f_{y}(t) \quad f_{x}, f_{y}: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(t) \quad f: \mathbb{R} \rightarrow \mathbb{R}^{2}
$$

$$
\begin{gathered}
x(t)=\cos (t) \\
y(t)=\sin (t) \\
t \in[0,2 \pi]
\end{gathered}
$$

typically:

$$
\gamma=\left\{\begin{array}{c}
(x, y): \exists t \in \mathbb{R}: \\
f_{x}(t)=x \\
f_{y}(t)=y
\end{array}\right\}
$$

$t \in[0,1]$

Polynomial curves

- Avoids complicated functions (e.g. pow, exp, sin, sqrt)
- Use simple polynomials of low degree
- Flexible, easy to use

$$
\begin{aligned}
& x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\cdots \\
& y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+\cdots \\
& z(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+\cdots
\end{aligned}
$$

$$
P(t)=\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=\sum_{i=0}^{n} t^{i} \cdot\left(a_{i}, b_{i}, c_{i}\right)
$$

$$
\left.P(t)=\begin{array}{llll}
\text { monomial basis } \\
t^{n} & t^{n-1} & \ldots & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{n} & b_{n} \\
a_{n-1} & b_{n-1} \\
\vdots & \vdots \\
a_{0} & b_{0}
\end{array}\right]
$$

- each coordinate is \mathbb{R}^{3}

Derivatives

- Tangent vector

$$
\begin{aligned}
& P(t)=\left(\begin{array}{lllll}
t^{n} & t^{n-1} & \cdots & t & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
a_{n} & b_{n} & c_{n} \\
a_{n-1} & b_{n-1} & c_{n-1} \\
\vdots & \vdots & \vdots \\
a_{0} & b_{0} & c_{0}
\end{array}\right) \\
& P^{\prime}(t)=\left(\begin{array}{lllll}
n t^{n-1} & (n-1) t^{n-1} & \cdots & 1 & 0
\end{array}\right) \cdot\left(\begin{array}{ccc}
a_{n} & b_{n} & c_{n} \\
a_{n-1} & b_{n-1} & c_{n-1} \\
\vdots & \vdots & \vdots \\
a_{0} & b_{0} & c_{0}
\end{array}\right)
\end{aligned}
$$

Continuity

Continuity and smoothness between parametric curves

$$
\gamma_{1}, \gamma_{2}:[0,1] \rightarrow \mathbb{R}^{d}
$$

Not continuous

$\mathrm{G}^{0}-\mathrm{C}^{0}$-continuous

$$
\gamma_{1}(1)=\gamma_{2}(0)
$$

Continuity

Continuity and smoothness between parametric curves

$$
\gamma_{1}, \gamma_{2}:[0,1] \rightarrow \mathbb{R}^{d}
$$

G^{1}-continuous
$\mathrm{G}^{0}+$ tangent vectors parallel

$$
\gamma_{1}^{\prime}(1)=p \gamma_{2}^{\prime}(0), p \in \mathbb{R}_{+}
$$

C1-continuous
$\mathrm{C}^{0}+$ tangent vectors parallel

$$
\gamma_{1}^{\prime}(1)=\gamma_{2}^{\prime}(0)
$$

Continuity

Continuity and smoothness between parametric curves

$$
\gamma_{1}, \gamma_{2}:[0,1] \rightarrow \mathbb{R}^{d}
$$

G^{2}-continuous

$$
\mathbf{G}^{1}+\gamma_{1}^{\prime \prime}(1)=p \gamma_{2}^{\prime \prime}(0), p \in \mathbb{R}_{+}
$$

C^{2}-continuous
$\mathbf{C}^{1}+\gamma_{1}^{\prime \prime}(1)=\gamma_{2}^{\prime \prime}(0)$
G^{2} - smooth reflections

LAGRANGE INTERPOLATION

Lagrange Interpolation

Given a set of points:

$$
\left(t_{i}, p_{i}\right), t \in \mathbb{R}, p_{i} \in \mathbb{R}^{d}
$$

Find a polynomial P such that:

$$
\forall i P\left(t_{i}\right)=p_{i}
$$

Lagrange Interpolation

Given a set of n points:

$$
\left(t_{i}, p_{i}\right), t \in \mathbb{R}, p_{i} \in \mathbb{R}^{d}
$$

Find a polynomial P such that:

$$
\forall i P\left(t_{i}\right)=p_{i}
$$

For each point associate a Lagrange basis polynomial:

$$
\begin{array}{ll}
L_{i}^{n}(t)= & \prod_{\substack{j \\
j \neq i}} \frac{t-t_{j}}{t_{i}-t_{j}} \\
(i \neq j) & L_{i}^{n}\left(t_{j}\right)=0 \\
& L_{i}^{n}\left(t_{i}\right)=1
\end{array}
$$

Lagrange Interpolation

Given a set of n points:

$$
\left(t_{i}, p_{i}\right), t \in \mathbb{R}, p_{i} \in \mathbb{R}^{d}
$$

Find a polynomial P such that:

$$
\forall i P\left(t_{i}\right)=p_{i}
$$

For each point associate a Lagrange basis polynomial:

$$
L_{i}^{n}(t)=\prod_{\substack{j \\ j \neq i}} \frac{t-t_{j}}{t_{i}-t_{j}}
$$

Add the Lagrange basis with points as weights:

$$
P(t)=\sum_{i} L_{i}^{n}(t) \cdot p_{i}
$$

$$
\begin{array}{cccc}
\text { Lagrange basis } & & & \\
\left.P(t)=\begin{array}{llll}
L_{0}^{n} & L_{1}^{n} & \cdots & \left.L_{n-1}^{n}\right)
\end{array}\left(\begin{array}{ccc}
p_{0_{x}} & p_{0_{y}} & p_{0_{z}} \\
p_{1_{x}} & p_{1 y} & p_{1_{z}} \\
\vdots & \vdots & \vdots \\
p_{n-1_{x}} & p_{n-1_{y}} & p_{n-1_{z}}
\end{array}\right) . \begin{array}{lll}
\\
\hline
\end{array}\right)
\end{array}
$$

Lagrange Interpolation

Given a set of n points:

$$
\left(t_{i}, p_{i}\right), t \in \mathbb{R}, p_{i} \in \mathbb{R}^{d}
$$

Find a polynomial P such that:

$$
\forall i P\left(t_{i}\right)=p_{i}
$$

For each point associate a Lagrange basis polynomial:

$$
L_{i}^{n}(t)=\prod_{\substack{j \\ j \neq i}} \frac{t-t_{j}}{t_{i}-t_{j}}
$$

Add the Lagrange basis with points as weights:

$$
P(t)=\sum_{i} p_{i} L_{i}^{n}(t)
$$

Given 2 points

$$
\begin{aligned}
L_{0}^{2}(t) & =\frac{t-t_{1}}{t_{0}-t_{1}} \\
L_{1}^{2}(t) & =\frac{t-t_{0}}{t_{1}-t_{0}} \\
P(t) & =\text { linear interpolation }
\end{aligned}
$$

Given 3 points

$$
L_{0}^{3}(t)=\frac{t-t_{1}}{t_{0}-t_{1}} \frac{t-t_{2}}{t_{0}-t_{2}}
$$

$P(t)=$ quadratic interpolation

Problems

-Problems with a single polynomial

-Degree depends on the number of interpolation constraints
-Strong overshooting for high degree ($\mathrm{n}>7$)
-Problems with smooth joints
-Numerically unstable
-No local changes

SPLINES

Splines

-Functions for interpolation \& approximation

-Standard curve and surface primitives in geometric modeling
-Key frame and in-betweens in animations
-Filtering and reconstruction of images

-Historically

-Name for a tool in ship building
-Flexible metal strip that tries to stay straight
-Within computer graphics:
-Piecewise polynomial function

Linear Interpolation

- Defined by two points: p_{1}, p_{2}
- Searching for $P(t)$ such that:
- $P(0)=p_{1}$
- $\quad P(1)=p_{2}$
- Degree of P is 1

Basis:

$$
\begin{aligned}
T_{1}(t) & =1-t \\
T_{2}(t) & =t
\end{aligned}
$$

$$
P(t)=p_{1} T_{1}(t)+p_{2} T_{2}(t)
$$

$$
\begin{aligned}
& \text { Linear basis } \\
& \left.P(t)^{T}=\begin{array}{ll}
(1-t & t
\end{array}\right)\binom{p_{1}^{T}}{p_{2}^{T}}
\end{aligned}
$$

Linear Interpolation

$$
P(t)^{T}=M \cdot\left(\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right) \cdot\binom{p_{1}^{T}}{p_{2}^{T}}
$$

Linear Interpolation

$$
P(t)=M \cdot\left(\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right) \cdot\binom{p_{1}}{p_{2}}
$$

C^{0}-continuous

Cubic Hermite Interpolation

- Defined by
- two points: p_{1}, p_{2}
- two tangents: t_{1}, t_{2}
- Searching for $P(t)$ such that:
- $\quad P(0)=p_{1}$
- $\quad P^{\prime}(0)=t_{1}$
- $\quad P^{\prime}(1)=t_{2}$
- $\quad P(1)=p_{2}$
- Degree of P is 3

Basis:

$$
\begin{aligned}
& H_{0}^{3}(t)=? \\
& H_{1}^{3}(t)=? \\
& H_{2}^{3}(t)=? \\
& H_{3}^{3}(t)=?
\end{aligned}
$$

Cubic Hermite Interpolation

- Defined by
- two points: p_{1}, p_{2}
- two tangents: t_{1}, t_{2}
- Searching for $P(t)$ such that:
- $\quad P(0)=p_{1}$
- $P^{\prime}(0)=t_{1}$
- $P^{\prime}(1)=t_{2}$
- $\quad P(1)=p_{2}$
- Degree of P is 3

Basis:

$$
\begin{aligned}
& H_{0}^{3}(t)=? \\
& H_{1}^{3}(t)=? \\
& H_{2}^{3}(t)=? \\
& H_{3}^{3}(t)=?
\end{aligned}
$$

$$
P(t)^{T}=M \cdot H \cdot\left(\begin{array}{c}
p_{1}^{T} \\
t_{1}^{T} \\
t_{2}^{T} \\
p_{2}^{T}
\end{array}\right)=M \cdot H \cdot G
$$

Cubic Hermite Interpolation

- Defined by
- two points: p_{1}, p_{2}
- two tangents: t_{1}, t_{2}

$$
\begin{aligned}
P(t)^{T} & =\left(\begin{array}{llll}
t^{3} & t^{2} & t^{1} & 1
\end{array}\right) \cdot H \cdot G \\
P^{\prime}(t)^{T} & =\left(\begin{array}{llll}
3 t^{2} & 2 t & 1 & 0
\end{array}\right) \cdot H \cdot G
\end{aligned}
$$

- Searching for $P(t)$ such that:
- $\quad P(0)=p_{1}$
- $\quad P^{\prime}(0)=t_{1}$
- $\quad P^{\prime}(1)=t_{2}$
- $\quad P(1)=p_{2}$

$$
\begin{aligned}
& p_{1}^{T}=P(0)^{T}=\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right) \cdot H \cdot G \\
& t_{1}^{T}=P^{\prime}(0)^{T}=\left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right) \cdot H \cdot G
\end{aligned}
$$

$$
t_{2}^{T}=P^{\prime}(1)^{T}=\left(\begin{array}{llll}
3 & 2 & 1 & 0
\end{array}\right) \cdot H \cdot G
$$

$$
p_{2}^{T}=P(1)^{T}=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right) \cdot H \cdot G
$$

$$
\left(\begin{array}{c}
p_{1}^{T} \\
t_{1}^{T} \\
t_{2}^{T} \\
p_{2}^{T}
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right) \cdot H \cdot\left(\begin{array}{c}
p_{1}^{T} \\
t_{1}^{T} \\
t_{2}^{T} \\
p_{2}^{T}
\end{array}\right)
$$

Cubic Hermite Interpolation

- Defined by
- two points: p_{1}, p_{2}
- two tangents: t_{1}, t_{2}
- Searching for $P(t)$ such that:
- $P(0)=p_{1}$
- $\quad P^{\prime}(0)=t_{1}$
- $\quad P^{\prime}(1)=t_{2}$
- $\quad P(1)=p_{2}$
- Degree of P is 3

$$
H=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
2 & 1 & 1 & -2 \\
-3 & -2 & -1 & 3 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Cubic Hermite Interpolation

- Defined by
- two points: p_{1}, p_{2}
- two tangents: t_{1}, t_{2}
- Searching for $P(t)$ such that:
- $\quad P(0)=p_{1}$
- $\quad P^{\prime}(0)=t_{1}$
- $P^{\prime}(1)=t_{2}$
- $P(1)=p_{2}$
- Degree of P is 3

Basis:

$$
\begin{aligned}
& H_{0}^{3}(t)=(1-t)^{2}(1+2 t) \\
& H_{1}^{3}(t)=t(1-t)^{2} \\
& H_{2}^{3}(t)=t^{2}(t-1) \\
& H_{3}^{3}(t)=(3-2 t) t^{2}
\end{aligned}
$$

$\left(H_{0}^{3}(t) \quad H_{1}^{3}(t) \quad H_{2}^{3}(t) \quad H_{3}^{3}(t)\right)$

Cubic Hermite Interpolation

Bézier

- Defined by
- b_{0} - start point
- b_{3} - end point
- b_{1}, b_{2} - control points that are approximated
- Searching for $P(t)$ such that:
- $P(0)=b_{0}$

- $P^{\prime}(0)=3\left(b_{1}-b_{0}\right)$
- $P^{\prime}(1)=3\left(b_{3}-b_{2}\right)$
- $P(1)=b_{3}$
- Degree of P is 3

Bézier

- Defined by
- b_{0} - start point
- b_{3} - end point
- b_{1}, b_{2} - control points that are approximated
- Searching for $P(t)$ such that:
- $P(0)=b_{0}$

- $P^{\prime}(0)=3\left(b_{1}-b_{0}\right)$
- $\quad P^{\prime}(1)=3\left(b_{3}-b_{2}\right)$
- $P(1)=b_{3}$
- Degree of P is 3

$$
\left(\begin{array}{c}
p_{1}^{T} \\
t_{1}^{T} \\
t_{2}^{T} \\
p_{2}^{T}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
b_{0}^{T} \\
b_{1}^{T} \\
b_{2}^{T} \\
b_{3}^{T}
\end{array}\right)
$$

$$
P(t)^{T}=M \cdot H \cdot T_{B H} \cdot G
$$

Bézier

- Defined by
- b_{0} - start point
- b_{3} - end point
- b_{1}, b_{2} - control points that are approximated
- Searching for $P(t)$ such that:
- $\quad P(0)=b_{0}$
- $P^{\prime}(0)=3\left(b_{1}-b_{0}\right)$
- $P^{\prime}(1)=3\left(b_{3}-b_{2}\right)$
- $P(1)=b_{3}$
- Degree of P is 3

Basis:

$$
\begin{aligned}
& B_{0}^{3}(t)=(1-t)^{3} \\
& B_{1}^{3}(t)=3(1-t)^{2} t \\
& B_{2}^{3}(t)=3(1-t) t^{2} \\
& B_{3}^{3}(t)=t^{3}
\end{aligned}
$$

Bernstein polynomial:

$$
B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}
$$

$$
B=H \cdot T_{B H}=\left(\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

$$
P(t)=\sum_{i} b_{i} B_{i}^{n}(t)
$$

Bézier properties

-Advantages:

-End point interpolation
-Tangents explicitly specified
-Smooth joints are simple
$-P_{3}, P_{4}, P_{5}$ collinear $\rightarrow G^{1}$ continuous
$-P_{5}-P_{4}=P_{4}-P_{3} \rightarrow C^{1}$ continuous
-Geometric meaning of control points
-Affine invariance
-Convex hull property

- For $0<t<1$: $B_{i}(t) \geq 0$

-Symmetry: $\mathrm{B}_{\mathrm{i}}(\mathrm{t})=\mathrm{B}_{\mathrm{n-i}}(1-\mathrm{t})$

-Disadvantages

-Smooth joints need to be maintained explicitly
-Automatic in B-Splines (and NURBS)

DeCasteljau Algorithm

Bernstein polynomial defined recursively:

$$
B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}=t B_{i-1}^{n-1}(t)+(1-t) B_{i}^{n-1}(t)
$$

$$
P(t)=\sum_{i} b_{i} B_{i}^{n}(t)
$$

Recursive point computation:

$$
\begin{aligned}
& b_{i}^{0}(t)=b_{i} \\
& b_{i}^{k+1}(t)=t b_{i+1}^{k}(t)+(1-t) b_{i}^{k}(t) \\
& \sum_{i} b_{i}^{k}(t) B_{i}^{n-k}(t)= \\
& \sum_{i} b_{i}^{k}(t) t B_{i-1}^{n-k-1}(t)+b_{i}^{k}(t)(1-t) B_{i}^{n-k-1}(t)= \\
& \sum_{i} b_{i+1}^{k}(t) t B_{i}^{n-k-1}(t)+b_{i}^{k}(t)(1-t) B_{i}^{n-k-1}(t)= \\
& \sum_{i} b_{i}^{k+1}(t) B_{i}^{n-k-1}(t) \\
& P(t)=\cdots=b_{0}^{n}(t)
\end{aligned}
$$

DeCasteljau Algorithm

$$
t=0.5
$$

Catmull-Rom-Splines

-Goal
-Smooth (C^{1})-joints between (cubic) spline segments

-Algorithm

-Tangents given by neighboring points $\mathrm{P}_{\mathrm{i}-1} \mathrm{P}_{\mathrm{i}+1}$
-Construct (cubic) Hermite segments
-Advantage
-Arbitrary number of control points
-Interpolation without overshooting
-Local control

Qatnnui- 1 ann-snines

- Each segment defined by
- c_{1} - start point
- c_{2} - end point
- c_{0}, c_{3} - neighbor segment points
- Searching for $P(t)$ such that:
- $\quad P(0)=c_{1}$

- $P^{\prime}(0)=\frac{1}{2}\left(c_{2}-c_{0}\right)$
- $P^{\prime}(1)=\frac{1}{2}\left(c_{3}-c_{1}\right)$
- $P(1)=c_{2}$
- Degree of P is 3

Catmull-Rom-Splines

- Each segment defined by
- c_{1} - start point
- c_{2} - end point
- c_{0}, c_{3} - neighbor segment points
- Searching for $P(t)$ such that:
- $\quad P(0)=c_{1}$
- $P^{\prime}(0)=\frac{1}{2}\left(c_{2}-c_{0}\right)$
- $P^{\prime}(1)=\frac{1}{2}\left(c_{3}-c_{1}\right)$
- $\quad P(1)=c_{2}$
- Degree of P is 3

$$
\begin{aligned}
& \left(\begin{array}{c}
p_{1}^{T} \\
t_{1}^{T} \\
t_{2}^{T} \\
p_{2}^{T}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & -\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
c_{0}^{T} \\
c_{1}^{T} \\
c_{2}^{T} \\
c_{3}^{T}
\end{array}\right) \\
& P(t)^{T}=M \cdot H \cdot T_{C H} \cdot G
\end{aligned}
$$

Catmull-Rom-Splines

- Each segment defined by
- c_{1} - start point
- c_{2} - end point
- c_{0}, c_{3} - neighbor segment points
- Searching for $P(t)$ such that:
- $\quad P(0)=c_{1}$

- $P^{\prime}(0)=\frac{1}{2}\left(c_{2}-c_{0}\right)$
- $P^{\prime}(1)=\frac{1}{2}\left(c_{3}-c_{1}\right)$
- $P(1)=c_{2}$
- Degree of P is 3

$$
C=H \cdot T_{B H}=\frac{1}{2}\left(\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
2 & -5 & 4 & -1 \\
-1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0
\end{array}\right)
$$

Basis:

$$
\begin{aligned}
& C_{0}(t)=-\frac{1}{2} t(t-1)^{2} \\
& C_{1}(t)=\frac{1}{2}(t-1)\left(3 t^{2}-2 t-2\right) \\
& C_{2}(t)=-\frac{1}{2} t\left(3 t^{2}-4 t-1\right) \\
& C_{3}(t)=\frac{1}{2} t^{2}(t-1)
\end{aligned}
$$

Catmull-Rom-Splines

-Catmull-Rom-Spline

-Piecewise polynomial curve
-Four control points per segment
-For n control points we obtain ($\mathrm{n}-3$) polynomial segments

-Application

-Smooth interpolation of a given sequence of points
-Key frame animation, camera movement, etc.
-Control points should be equidistant in time

Choice of Parameterization

-Problem

-Often only the control points are given
-How to obtain a suitable parameterization t_{i} ?
-Example: Chord-Length Parameterization

$$
\begin{aligned}
& t_{0}=0 \\
& t_{i}=\sum_{j=1}^{i} \operatorname{dist}\left(P_{i}-P_{i-1}\right)
\end{aligned}
$$

-Arbitrary up to a constant factor
»Warning
-Distances are not affine invariant !
-Shape of curves changes under transformations !!

Choice of Parameterization

-Chord-Length versus uniform Parameterization -Analog: Think $\mathrm{P}(\mathrm{t})$ as a moving object with mass that may overshoot

