Computer Graphics

- Clipping -

Philipp Slusallek & Stefan Lemme

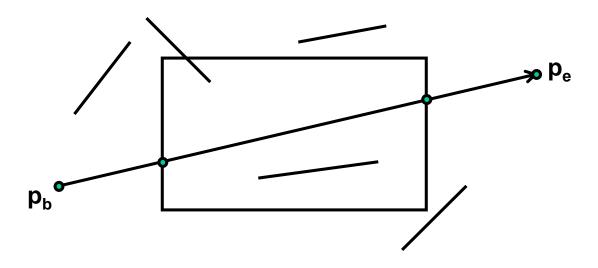
Clipping

Motivation

- Projected primitive might fall (partially) outside of the visible display window
 - E.g. if standing inside a building
- Eliminate non-visible geometry early in the pipeline to process visible parts only
- Happens after transformation from 3D to 2D
- Must cut off parts outside the window
 - Cannot draw outside of window (e.g. plotter)
 - Outside geometry might not be representable (e.g. in fixed point)
- Must maintain information properly
 - Drawing the clipped geometry should give the correct results: e.g. correct interpolation of colors at triangle vertices when one is clipped
 - Type of geometry might change
 - Cutting off a vertex of a triangle produces a quadrilateral
 - Might need to be split into triangle again
 - Polygons must remain closed after clipping

Line Clipping

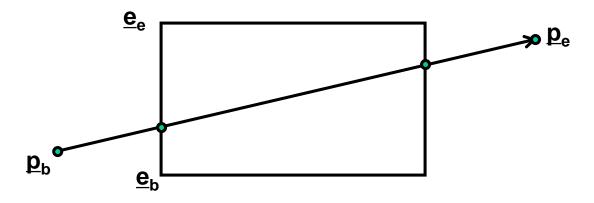
- Definition of clipping
 - Cut off parts of objects which lie outside/inside of a defined region
 - Often clip against viewport (2D) or canonical view-volume (3D)
- Let's focus first on lines only



Brute-Force Method

Brute-force line clipping at the viewport

- If both end points p_b and p_e are inside viewport
 - Accept the whole line
- Otherwise, clip the line at each edge
 - $p_{\text{intersection}} = p_b + t_{line}(p_e p_b) = e_b + t_{edge}(e_e e_b)$
 - Solve for t_{line} and t_{edge}
 - Intersection within segment if both $0 \le t_{line}$, $tedge \le 1$
 - Replace suitable end points for the line by the intersection point



Cohen-Sutherland (1974)

Advantage: divide and conquer

- Efficient trivial accept and trivial reject
- Non-trivial case: divide and test

Outcodes of points

- Bit encoding (outcode, OC)
 - Each viewport edge defines a half space
 - · Set bit if vertex is outside w.r.t. that edge

1001	1000	1010
0001	0000	0010
0101	0100	0110

Bit order: top, bottom, right, left

Viewport $(x_{min}, y_{min}, x_{max}, y_{max})$

Trivial cases

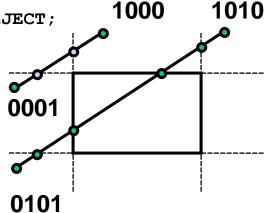
- Trivial accept: both are in viewport
 - $(OC(p_b) OR OC(p_e)) == 0$
- Trivial reject: both lie outside w.r.t. at least one common edge
 - $(OC(p_b) AND OC(p_e)) \neq 0$
- Line has to be clipped to all edges where XOR bits are set, i.e.
 the points lies on different sides of that edge
 - OC(p_b) XOR OC(p_e)

Cohen-Sutherland

Clipping of line (p1, p2)

Intersection calculation for x = x_{min}

$$\frac{y - y_a}{y_e - y_a} = \frac{x_{\min} - x_a}{x_e - x_a}$$
$$y = y_a + (x_{\min} - x_a) \frac{y_e - y_a}{x_e - x_a}$$



Cyrus-Beck (1978)

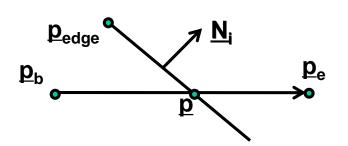
Parametric line-clipping algorithm

- Only convex polygons: max 2 intersection points
- Use edge orientation

Idea: clipping against polygons

- Clip line $p = p_b + t_i(p_e p_b)$ with each edge
- Intersection points sorted by parameter t_i
- Select
 - t_{in} : entry point $((p_e p_b) \cdot N_i < 0)$ with largest t_{in}
 - t_{out} : exit point $((p_e p_b) \cdot N_i > 0)$ with smallest t_i
- If t_{out} < t_{in}, line lies completely outside (akin to ray-box intersect.)

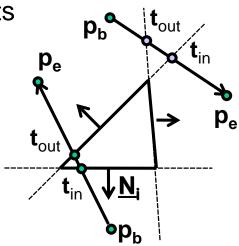
Intersection calculation



$$(p - p_{edge}) \cdot N_i = 0$$

$$t_i(p_e - p_b) \cdot N_i + (p_b - p_{edge}) \cdot N_i = 0$$

$$t_i = \frac{(p_{edge} - p_b) \cdot N_i}{(p_e - p_b) \cdot N_i}$$



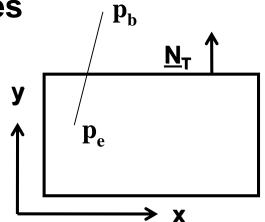
Liang-Barsky (1984)

Cyrus-Beck for axis-aligned rectangles

 Using window-edge coordinates (with respect to an edge T)

$$WEC_T(p) = (p - p_T) \cdot N_T$$

Example: top (y = y_{max})



$$N_T = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, p_b - p_T = \begin{pmatrix} x_b - x_{max} \\ y_b - y_{max} \end{pmatrix}$$

$$t_T = \frac{(p_b - p_T) \cdot N_T}{(p_b - p_e) \cdot N_T} = \frac{WEC_T(p_b)}{WEC_T(p_b) - WEC_T(p_e)} = \frac{y_b - y_{max}}{y_b - y_e}$$

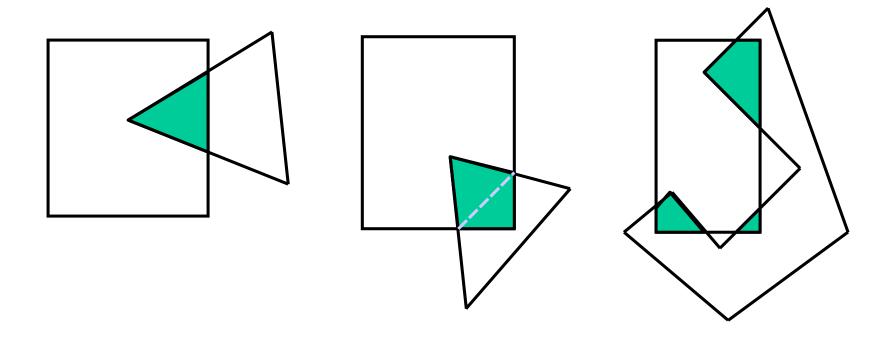
- Window-edge coordinate (WEC): decision function for an edge
 - Directed distance to edge
 - Only sign matters, similar to Cohen-Sutherland outcodes
 - Sign of the dot product determines whether the point is in or out
 - Normalization unimportant

Line Clipping - Summary

- Cohen-Sutherland, Cyrus-Beck, and Liang-Barsky algorithms readily extend to 3D
- Cohen-Sutherland algorithm
 - + Efficient when majority of lines can be trivially accepted / rejected
 - Very large clip rectangles: almost all lines inside
 - Very small clip rectangles: almost all lines outside
 - Repeated clipping for remaining lines
 - Testing for 2D/3D point coordinates
- Cyrus-Beck (Liang-Barsky) algorithms
 - + Efficient when many lines must be clipped
 - + Testing for 1D parameter values
 - Testing intersections always for all clipping edges (in the Liang-Barsky trivial rejection testing possible)

Polygon Clipping

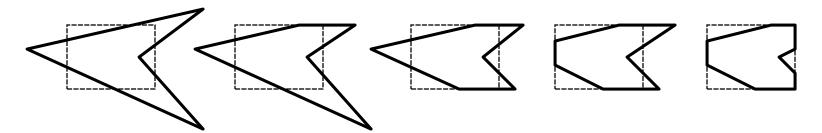
- Extended version of line clipping
 - Condition: polygons have to remain closed
 - Filling, hatching, shading, ...



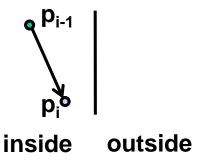
Sutherland-Hodgeman (1974)

Idea

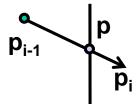
Iterative clipping against each edge in sequence



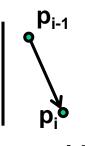
Local operations on p_{i-1} and p_i



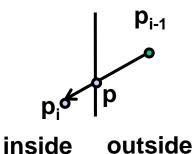
output: p_i



inside outside output: p



inside outside output: -

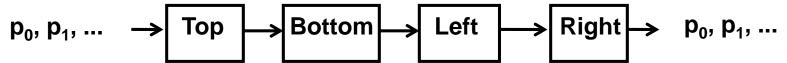


1st output: p 2nd output: p_i

Enhancements

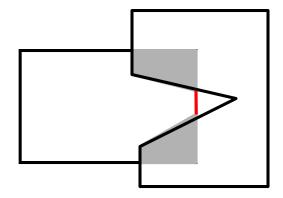
Recursive polygon clipping

Pipelined Sutherland-Hodgeman



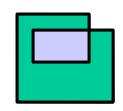
Problems

- Degenerated polygons/edges
 - Elimination by post-processing, if necessary



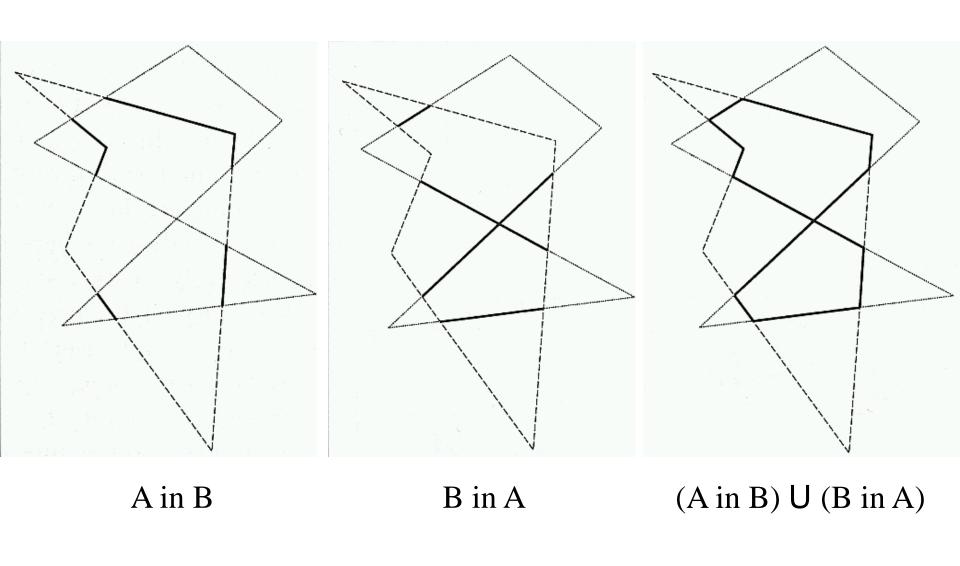
Other Clipping Algorithms

- Weiler & Atherton ('77)
 - Arbitrary concave polygons with holes against each other
- Vatti ('92)
 - Also with self-overlap
- Greiner & Hormann (TOG '98)
 - Simpler and faster as Vatti
 - Also supports Boolean operations
 - Idea:
 - Odd winding number rule
 - Intersection with the polygon leads to a winding number ±1
 - Walk along both polygons
 - Alternate winding number value
 - Mark point of entry and point of exit
 - Combine results



Non-zero WN: in Even WN: out

Greiner & Hormann



3D Clipping agst. View Volume

Requirements

- Avoid unnecessary rasterization
- Avoid overflow on transformation at fixed point!

Clipping against viewing frustum

- Enhanced Cohen-Sutherland with 6-bit outcode
- After perspective division
 - -1 < y < 1
 - -1 < x < 1
 - -1 < z < 0
- Clip against side planes of the canonical viewing frustum
- Works analogously with Liang-Barsky or Sutherland-Hodgeman

3D Clipping agst. View Volume

Clipping in homogeneous coordinates

- Use canonical view frustum, but avoid costly division by W
- Inside test with a linear distance function (WEC)

```
• Left: X/W > -1 \Rightarrow W + X = WEC_L(\underline{p}) > 0
• Top: Y/W < 1 \Rightarrow W - Y = WEC_T(\underline{p}) > 0
• Back: Z/W > -1 \Rightarrow W + Z = WEC_B(\underline{p}) > 0
```

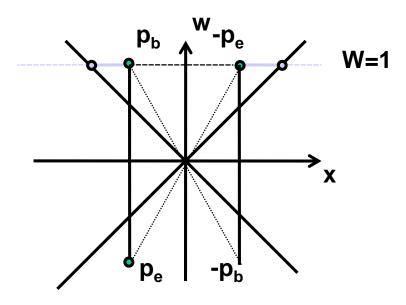
- Intersection point calculation (before homogenizing)
 - Test: $WEC_L(\underline{p}_b) > 0$ and $WEC_L(\underline{p}_e) < 0$
 - Calculation:

$$\begin{split} WEC_L \big(p_b + t(p_e - p_b) \big) &= 0 \\ W_b + t(W_e - W_b) + X_b + t(X_e - X_b) &= 0 \\ t &= \frac{W_b + X_b}{(W_b + X_b) - (W_e + X_e)} = \frac{WEC_L(p_b)}{WEC_L(p_b) - WEC_L(p_e)} \end{split}$$

Problems with Homogen. Coord.

Negative w

- Points with w < 0 or lines with $w_b < 0$ and $w_e < 0$
 - Negate and continue
- Lines with $w_b \cdot w_e < 0$ (NURBS)
 - Line moves through infinity
 - External line
 - Clipping two times
 - Original line
 - Negated line
 - Generates up to two segments



Practical Implementations

Combining clipping and scissoring

- Clipping is expensive and should be avoided
 - Intersection calculation
 - Variable number of new points, new triangles
- Enlargement of clipping region
 - Larger than viewport, but
 - Still avoiding overflow due to fixed-point representation
- Result
 - · Less clipping
 - Applications should avoid drawing objects that are outside of the viewport/viewing frustum
 - Objects that are partially outside will be implicitly clipped during rasterization
 - Slight penalty because they will still be processed (triangle setup)

Clipping region

