
Philipp Slusallek

Computer Graphics

– OpenGL –

History
• Graphics in the ‘80ies

– Framebuffer was a designated memory in RAM
– „HW“: Set individual pixels directly via memory access

• Peek & poke, getpixel & putpixel, …

• MDA ('81: text only but 720x350 resolution)

– Letter code was index into bit pattern for each letter

• CGA ('81: 160x200:

16 col w/ tricks;

320x200: 4 col;

640x200: 2 col)

• EGA ('85: 640x350: 16 from
64 col, CGA mode)

• VGA ('90: 640x480: 16 col
@ table with 2^18 col,
320x200: 256 col)

– Everything done on CPU
• Except for driving the

display output

History (II)
• Today (Nvidia Volta Flagship, GV100)

– Discrete graphics card via high-speed link
• e.g. PCIe-3.0 x16: 1-16 GB/s (PCIe 4.0 coming: 2x improvement)

– Autonomous, high performance GPU (more powerful than CPU)
• 5376 SIMD processors

• ~900 GB/s memory bandwidth (HBM2)

• ~30 TFLOPS 16bit floats

• ~15 TFLOPS single precision (SP)

• ~7.5 TFLOPS double precision (DP)

• 125 TFLOPS via 672 Tensor Cores for DL (4x4 matrix multiply)

• Up to 16GB of local RAM plus virtual memory

– Performs all low-level tasks & a lot of high-level tasks
• Clipping, rasterization, hidden surface removal, …

• Procedural geometry, shading, texturing, animation, simulation, …

• Video rendering, de- and encoding, deinterlacing, …

• Full programmability at several pipeline stages

• Deep Learning: Training and Inference

History (III)
• Brief history of graphics APIs

– Initially every company had its own 3D-graphics API
– Many early standardization efforts

• CORE, GKS/GKS-3D, PHIGS/PHIGS-PLUS, ...

– 1984: SGI´s proprietary Graphics Library (GL / IrisGL)

• 3D rendering, menus, input, events, text, ... → „Naturally grown“

• OpenGL (1992)
– By Mark Segal & Kurt Akeley

• Explicit design of a general vendor independent standard

– Close to hardware but hardware-independent → Efficient
– Orthogonal design and extensible

• Common interface from mobile phone to supercomputer

• Only real alternative today to Microsoft’s Direct3D

– OpenGL 3.0/3.2 (2008/2009), 4.0/4.1 (2010), … , 4.6 (Jul’17)

• Major redesign & cleanup, deprecated and removed functionality

• Since Version 3.2: Profiles (core, compatibility, forward compatibility)

• OpenCL, tesselation shaders, 64 bit variables, multi-viewpoint

• 4.3: Compute shaders, adv. texture compression, …

• 4.5: Direct state access, compatibility to OGL ES3.1, …

History (IV)
• Direct3D (Microsoft, Part of DirectX multimedia APIs)

– Started as Reality Labs by RenderMorphics, bought by MS

• Strong SW focus

– First version in 1996, Retained & Immediate Mode API
– Played catchup to OpenGL until Direct3D 6.0 (1998)
– Significantly advanced by close collaboration with HW vendors
– Largely feature parity since about 2008

• Race to “Zero Driver Overhead”
– Started with initiative by game developers to have better control and

avoid driver getting in their way, working with AMD since 2012
– Goals: Move API closer to HW, give better control, eliminate SW

overhead, more direct state handling, better multithreading, …
– OpenGL showed performance advantages in 4.3 and 4.4 (2012/13)
– AMD Mantle (2013) showing strong performance advantages
– Similar approach be Apple with Metal (2014 (iOS) & 2015 (OS X))
– DirectX 12 (Dec 2015) moved this into mainline gaming
– Cross-platform with Vulkan API (Khronos, 2016)

• Much lower level, requires expert programmer, … (not suited for teaching)

Introduction to OpenGL (II)
• What is OpenGL?

– Cross-platform, low-level software API for graphics HW (GPUs)

– Controlled by Khronos (was Architecture Review Board (ARB))

– Only covers 2D/3D rendering

– Other APIs: Vulkan, MS Direct3D, Apple Metal

• Related GUI APIs → X Window, MS Windows GDI, QT, GTK, Apple, ...

– Was focused on immediate mode operation

• As opposed to retained mode operation (storage of scene data)

• Thin hardware abstraction layer – almost direct access to HW

• Points, lines, triangles as base primitives

– Today more efficient batch processing (immediate mode is gone)

• Vertex arrays and buffer objects (controlled by app, but stored on GPU)

• Vulkan: More of this: prevalidated buffers created by CPU threads

– Network-transparent protocol

• GLX-Protocol – X Window extension

– Only in X11 environment!, now deprecated

Related APIs and Languages
• glsl (necessary, released in sync with OpenGL, later)

– The OpenGL shading language; defines programmable aspects

• OpenGL ES (3.2)
– Embedded subset (used on most mobile devices)
– Being better aligned with OpenGL (subset)

• EGL (GLX, WGL, AGL/CGL)
– Glue library to windowing systems, EGL becoming standard now

• OpenCL (2.2)
– Open Computing Language: Many-core computing
– Cross-platform version of Nvidia’s CUDA
– SPIR-V as a generic assembler format for GPUs

• WebGL (2.0)
– In the browser, based on OpenGL ES 3.0

• GUI-Toolkits
– QT: QtGLWidget class, Gtk: GtkGLExt widget
– SDL: Simple DirectMedia Layer (more modern, w/ audio etc)
– GLUT (OpenGL Utility Toolkit, older but still useful)

Additional Infos
• Just a few selected items (not complete)

• Books
– Real-Time Rendering, Third Edition

• By Tomas Akenine-Moller, Eric Haines, Naty Hoffman

• Advanced Techniques

– Learning Modern 3D Graphics Programming (Jason L. McKesson)

• http://alfonse.bitbucket.org/oldtut

– OpenGL SuperBible (7th edition, OGL 4.5)

• Tutorials
– Lighthouse3D: http://www.lighthouse3d.com

• WebGL
– WebGL PlayGround: http://webglplayground.net/

• Try out WebGL directly in the Web-Browser

http://alfonse.bitbucket.org/oldtut
http://www.lighthouse3d.com/
http://webglplayground.net/

Modern OpenGL Pipeline
• (Not looking at pixel

input and output)

lighthouse3D.com

Complete OpenGL Pipeline (4.5)

OpenGL Rendering
• OpenGL draws primitives

– Primitive types: points, lines, and triangles

– Drawing subject to selectable modes (w/ their state) and shaders

– Commands: set/change modes, send primitives, other operations

• Data (parameters) is bound when call is made (even for arrays)

• OpenGL maintains server & client state

– OpenGL contexts encapsulate state on the server

• Created, deleted, and changed by windowing system

– Window system also controls display of frame buffer content

• E.g. gamma correction tables, bit depth, etc.

• Frame buffers
– Default frame buffer (configured by window system, displayed)

– Plus arbitrary number of application created frame buffers

Specifying Primitives
• Geometric primitives

– Defined by vertices and their attributes
– Vertices processed individually, all in the same way and in order

• Until primitive assembly and rasterization

• Clipping may change primitives (add/delete)

• Providing Data Through Vertex Arrays
– Each vertex consists of the position and N attribute slots
– glEnable/DisableVertexAttribArray(slot)

• Enable use of array for specific slot (geometry always in slot 0)

• Fixed static value can be specified via glVertexAttrib(slot, …)

– glVertexAttribPointer(slot, size, type, normalized, stride, data)

• Slot define which attribute is specified

• Size specifies number of components (1D, 2D, 3D, 4D, BGRA)

• Type the data type in the array

– Byte, short, int, float, half, double (+ unsigned integers)

• Stride specifies the distance in bytes between two elements

• Data points to the array data

• Normalized defines how integer data is converted to float

Primitive Types
• Modes for Vertex Arrays

– Points

– Lines: Strips (connected), Loops (closed), Lines (separate)

– Triangle: Strips (shared common edge), Fans (shared first
vertex), Triangles (separate)

– With adjacency: Additional vertices around a primitive

• Lines, Line Strips, Triangles, TriangleStrips

– Patches with a fixed number of vertices per patch

• Must be used with tesselation shaders

Specifying Primitives
• Drawing from Vertex Array

– glDrawArrays(mode, first, count)
• Sends count vertices starting from first index

– glMultiDrawArrays(mode, first[], count[], elements)
• Same but executes elements times by iterating through first and

count

– glDrawElements (mode, count, type, indices[])
• Indexes into the vertex arrays through array of indices of given type

– glMultiDrawElements (mode, count[], type, indices[][], elements)
• Similar idea as MultiDrawArrays() but with indices

– glDrawArraysInstanced(mode, first, count, elements)
• Calls glDrawArrays elements times, incrementing a shader variable

instanceID for each instance

– glDrawElementsInstanced(mode, count, type, indices[], elements)
• As expected …

– Also: “Elements” calls with base vertex offset specified
• Multiple times for Multi version

– Additional and more efficient draw calls being designed

Buffers
• Buffers store data on the server (GPU) side

– glGenBuffers(n, out bufferIds[]), glDeleteBuffers(…)

• Allocates and deletes buffer objects

• Types of BufferBindings

• glBindBuffers(target, bufferId)
– Binds a buffer object (with or without data) to a specific target

• glBufferData(target, size, data, usage)
– Assigns data to a buffer object (and allocates memory for it)
– Usage provides hints how the data may be used in future

• glMapBuffer<Range>(target, <offset, length,> access)
– Maps/Copies (a range of) the buffer to address space of the client
– Must glUnmapBuffer() before use of buffer in OpenGL

• May use copy or mapping of virtual memory

Using Buffers
• All drawing calls use the currently bound (if any) buffer

– ARRAY_BUFFER for the vertex data

– ELEMENT_ARRAY_BUFFER for the index data

– All data (pointers) are interpreted as integers that provide offsets into
these buffers (so are typically zero)

• A complete set of buffer objects for all slots can be
specified with a Vertex Array Object (VAO)
– glGenVertexArrays(), glDeleteVertexArray()

– BindVertexArray(array)

• For setup:

– Bind all necessary buffers glBindVertexArray()

– Specify the vertex formats glVertexAttribPointer()

• Binding a Vao later sets up all buffers in the VAO simultaneously

• Draw calls can use all associated buffers immediately

Shaders
• Shaders compute what gets rendered

– Draw commands just provide input for shaders

• Shaders Stages communicate via interfaces

• Vertex Shaders
– Are executed for each vertex passed to OpenGL

• Receives “uniform” parameters for the shader

• “Attributes” for each vertex (see above)

• Writes to a set of “varyings” variables

– The output of a vertex shader can also be recorded (in app)

• Fragment Shader
– Are executed for every pixel covered by a primitive

• Receive the interpolated (e.g. across triangle) varying variables

• Outputs color, depth, other data (to frame buffer objects)

– Writing to buffers is still subject to per-fragment operations

Shaders (II)
• Geometry Shader

– Are executed for every primitive that has been assembled

• Receive an array of vertices (including all adjacent vertices)

– Output primitives of a specific type

• Generate new primitives by writing to all attribute variables and
issuing a EmitVertex() call

• Plus potentially an EndPrimitive() to start a new primitive

• Tesselation Control/Evaluation Shader
– Can only be used with Patch primitive

– Control: Determines the parameters of tesselation

– Fixed function stage does the tesselation

– Evaluation Shader: generates and outputs new primitives

• Programming shaders is discussed separately

Shaders (III)
• Shaders specify the programmable parts of a pipeline

• Different Types of shaders
– Must be compiled, combined into a “program”, and linked

• glGenShader(type)
– Create a shader object for a shader of the given type

• glShaderSource(shader, ...)
– Stores shader source code in the object

• glCompileShader(shader)
– Compiles the shader object

• glShaderBinary(…)
– Loads a precompiled shader in some format

• glGenProgram()
– Creates a new shader program

• glAttachShader(program, shader)
– Attaches a shader to a program

• glLinkProgram(program) & glValidateProgram(program)
– Sets up the interfaces between the shader stages

• glUseProgram(program)
– Preparea shader and use it for subsequent drawing calls

Shaders (IV)
• New in OpenGL4.1: Program Pipeline Object

– Encapsulates a preconfigured pipeline of shaders

• glGenProgramPipeline(), glDeleteProgramPipeline()
– Allocates and deallocates such objects

• glBindProgramPipeline(id)
– Activates the pipeline for draw commands and other operation

• glUseProgramStages(pipeline, stages, program)
– Binds the program to the indicated shader stages of the pipeline

– Program must be linked as „separable“

– Special rules apply to handling input/output variables of shaders

• glGetProgramBinary(…)
– Obtains back a compiled and linked program as a binary object

• glProgramBinary(…)
– Loads a shader binary into an allocated program object

– Must have been created on same/„compatible“ HW/SW

Shaders (V)
• Shaders have uniform parameters (instance variables)

– May be set to change shader behavior (diffuse color, matrix, …)
• May be allocated in blocks, stored in a uniform buffer (on the GPU)

– glGetUniformLocation(program, name)
• Returns the slot used for a specific named shader variable
• Can be used to pass data to the shader through VertexAttribPointer()

– glUniform*(location, …)
• Changes that parameter value

• Per-vertex data can be send to a program by:
– Applications do not necessarily know the shader in advance
– glGetActiveAttribute(program, index, …)

• Returns information about the attribute at given index
– Name, type, size of the specified attribute at “index”

– glGetAttribLocation(program, name)
• Returns the slot used for a specific named shader variable
• Use to send vertex data to the shader through glVertexAttribPointer()

– glBindAttribLocation(program, index, name)
• Assigns the given index to the named attribute
• Used by next linking process.

– Binding of names to locations can also be specified in shader code

Shaders (VI): Example
• Shader Variables

uniform float specIntensity;

uniform vec4 specColor;

uniform vec4 colors[3];

• Access from OpenGL
GLint loc1, loc2, loc3;

float specIntensity = 0.98;

float sc[4] = {0.8,0.8,0.8,1.0};

float colors[12] = {0.4,0.4,0.8,1.0, 0.2,0.2,0.4,1.0,

0.1,0.1,0.1,1.0};

loc1 = glGetUniformLocation(program,"specIntensity");

glUniform1f(loc1, specIntensity);

loc2 = glGetUniformLocation(program,"specColor");

glUniform4fv(loc2, 1, sc);

loc3 = glGetUniformLocation(program,"colors");

glUniform4fv(loc3, 3, colors);

Rasterization
• Rasterization: Generating fragments from primitives

– For every covered pixel

• And potentially many subpixels “samples” within a pixel

– Computes fragment data by interpolation over triangle

• All attributes and Z/depth

• At center (centroid) or at true sample position

• Can be perspectively correct (smooth) or linear in image space

• Different rasterization approaches
– For points, lines, and triangles (see spec)

• Backface culling of triangles
– Must be first enabled by glEnable(GL_CULL_FACE)

– glFrontFace(dir)

• Defines which triangles are front facing CLW/CCW (in screen space)

– glCullFace(mode)

• Defines which triangles are culled: FRONT, BACK, both

Rasterization (II)
• Strict ordering

– Primitives are rasterized as they proceed through the pipeline

• But pipeline may actually consist of multiple parallel HW pipelines

– Results must be as if rasterized in order as send by application

• Requires synchronization between HW pipelines

• Complicates scalability questions

Texturing
• Generating a new texture object

– glGenTexture(count, &texture)

• Each shader can have up N “textures image units” (128)
– Selected with glActiveTexture(GL_TEXTURE0 + i)

• Binding of texture objects to a unit
– glBindTexture(target, texture)

• Target: one of

– TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ARRAY,
TEXTURE_2D_ARRAY, TEXTURE_RECTANGLE, TEXTURE_BUFFER,
TEXTURE_CUBE_MAP, TEXTURE_2D_MULTISAMPLE, and
TEXTURE_2D_MULTISAMPLE_ARRAY

• Assignment to shader “sampler” variable with
– idx= GlGetUniformLocation(prog, name)

– glUniform1i(idx, texture)

• How textures are used is solely the job of the shader

Specifying a Texture
• Definition of Layout in Memory

– glPixelStore(param_name, value)

• See table below for which parameters define the layout

• Defining texture data
– glTexImage3D(target, level, internal_fmt, w, h, d, 0, format, type, data)
– glTexImage2D(target, level, internal_fmt, w, h, 0, format, type, data)
– glTexImage1D(target, level, internal_fmt, w, 0, format, type, data)
– *SubImage*: (Re-)define only a part of the texture at given offset

• level: Mipmaps, array index, or face of a cubemap

• internal_fmt: One of many formats for storing texture internally

• w, h, d: width, height, depth; (0 for border width, which must be zero)

• format, type: see below

• Copying texture data a GL from buffer
– glCopyTex(Sub)Image{1,2, 3}D(target, level, internal_fmt, …)

• Copy from the frame buffer bound to GL_READ_FRAMEBUFFER

• Also
– Compressed and multisampled formats
– Rendering from 1D buffer textures: glTexBuffer() (indexed with int)

Texture Types, Formats, Layouts

Texture data
type in user

memory
(incomplete)

Texture data format in user memory
(incomplete)

Image layout in user memory
(PixelStore)

Texture Types, Formats, Layouts

Texture Parameters & Objects
• Changed via

– glTexParam*(target, param_name, value)

• Type of parameters
– Wrap-mode in s, t, r: clamp (edge/border), repeat, mirror (alternately)

– Min_Filter: NEAREST, LINEAR, NEAREST_MIPMAP_NEAREST, to
LINEAR_MIPMAP_LINEAR

– Mag_Filter: NEAREST, LINEAR

– LOD/Mipmap parameter

– Compare function for Z comparison (depth texture only)

• But see Texture Sampler on next slide

Texture Samplers
• New in OpenGL 4.X

– Two aspects of a texture: The data and how it is to be used

– Previously a texture object specified both

– Better reuse if they can be separated

• Texture Sampler
– Specify how the texture data (in a texture Object) should be used

– Single Sampler can be attached to many units

• Allocate new/delete texture Sampler
– glGenSampler(…), glDeleteSampler()

• Bind a Sampler to a Texture
– glBindSampler(unit, sampler)

– Its parameters supersedes those of the texture object

• Specify Sampler parameters
– glSamplerParameter(…)

– Defines: Wrap mode, Filter, LOD, depth comparison

Per-Fragment Operations

Pixel

Ownership

Test

Fragment

(or sample)

+

Associated

Data

Scissor

Test

Multisample

Fragment

Operations

Stencil

Test

Depth

Buffer Test

Occlusion

Query
Blending

sRGB

Conversion
Dithering

Logic

Operations

To

Framebuffer

FramebufferFramebufferFramebuffer

Framebuffer

Per-Fragment Operations
• Consists of multiple steps

• Pixel ownership test (internal)
– Does the pixel belong to this context/window (might be covered)

• Scissor test
– Is the pixel within a box defined by glScissor(l, b, r, t)

• Multi-sample Fragment Operations
– Merge the information of sub-samples in a pixel to a final value
– Includes an “alpha test” (binary transparency)

• Ignores (sub-)fragments with an alpha value below some threshold

• Stencil Operation (see below)

• Depth Buffer Test
– Tests if the fragment z value passes the depth stored at the pixel

• Occlusion Query (see below)

• Blend operations (see below)
– Merge fragments with content of the frame buffer

Stencil and Depth Test
• Function

– Compares value stored in stencil buffer for fragment/pixel
– If test fails, fragment is discarded
– Finally, applies operation based on three possible tests

• sfail: Stencil tests failed

• dfail: Stencil test passed, but depth test failed

• dpass: Stencil and depth test passed

• Specification
– glStencilFunc(enum func, int ref, uint mask)

• func: ALWAYS, NEVER, LESS, LEQUAL, GEQUAL, GREATER, NOTEQUAL

• ref: reference value

• mask: ANDed with both stencil and reference value

– glStencilOp(sfail, dfail, dpass)

• Operations: KEEP, ZERO, REPLACE, INC, DEC, INVERT, INCR_WRAP, DEC_WRAP

• Depth Test
– Comparison to the per-pixel value stored in depth buffer

– glDepthFunc(func)

• Compares fragment z with with content of depth buffer (func: same as stencil)

• If test passes, will overwrite old depth value with fragment depth

Fragment Tests
• Fragment tests (like stencil and Z)

– Require per pixel read operations (high bandwidth)
– May require per pixel write operations

• Read-Modify-Write operations – can be expensive (but cached in tiles)

• Again synchronization issues with multiple pipelines

– Tests occur late in the pipeline
– Might have spend significant processing on the data already

• Should perform tests earlier without violating OpenGL semantics

• Often can be conservatively pulled to forward to after rasterization

• E.g. Some form of hierarchical Z-buffer (often called “Early-Z-test”)

• Occlusion culling
– At application level

• Replicated visibility computation in the application (mostly coarse)

• Avoids bandwidth to graphics engine completely, but uses CPU

– Early Z test after rasterization
• Can cull fragments if known to be occluded (some addition cost)

• Best if rendering is front-to-back

Occlusion Queries
• Counting the number of passed depth tests

– Generate Counters: glGenQueries(int n, int* ids)

– Wrap drawing calls in glBeginQuery(id)/glEndQuery(id)

– Can later query the value with glGetQueryiv()

• Use for conditional rendering
– Wrap drawing calls that should be omitted if OC failes in:

• glBeginConditionalRender(), glEndConditionalRender()

• Will be skipped if OC failed (no fragments passed the depth test)

• Can specify what happens if OC not ready yet (wait, draw)

– Can be used to do (limited) frustum cullling on the GPU

Blending
• Merging fragment and frame buffer pixel

– Weighted combination of source (S, fragment) and
destination (D, frame buffer)

• Specifying the blend equation, function, and constant
– glBlendEquation{,Separate}(mode {,alpha_mode})

– glBlendFunc{,Separate}(src, dst {,alpha_src, alpha_dst})

– glBlendColor(red, green ,blue, alpha) specifies constant C

– Separate allows to set blending separately for color/alpha

𝑆𝑖 and 𝐷𝑖 are the weights from blend functions

sRGB, Dithering, Logic Ops
• SRGB conversion

– Performed if the frame buffer is specified to be in sRGB

• Non-linear mapping with gamma = 1/1.24 (and linear base)

• Dithering
– Round each color component

• Round to either the larger or smaller representable value

– Decision based only on pixel position (rounding bias)

– Converts missing color resolution into less spatial resolution

• Eye averages over neighboring pixels anyway

– glEnable/Disable(GL_DITHER)

• Logic Ops
– Combine fragment (s) and frame buffer pixel (d) with

logic operation

• glLogicOp(op)

OpenGL and Buffers
• OpenGL system frame buffers

– Provide memory for storing data for every pixel

• Color, depth (Z), stencil, (window-id), and others

– Format must be fixed before windows are opened

• Window-System specific: glXGetFBConfigs()

• Color buffers
– RGBA (RGB+Alpha)

• Alpha stores transparency/coverage information

• Today often 8/8/8(/8) bits (10 bit becoming more popular)

• Latest chips also support 16 bit fix and 16/24/32 bit float components

– Double buffering option (back- and front buffer)

• Animations: draw into back, display front

• No flashing or tearing artifacts during display

• Swap buffers during vertical retrace (glXSwapBuffers) or asap.

• New monitors support “Adaptive Sync” to send FB when ready (w/ limits)

– No longer limited to fixed frame rate

– Stereo option (possibly quad buffered)

• Left and right buffers (also with DB), e.g. for two projectors

• Requires support from GUI

OpenGL and Buffers
• Depth/Z buffer

– Stores depth/Z coordinate of visible geometry per pixel

– Used for occlusion test (Z-test)

• Stencil buffer
– Small integer variable per pixel

– Used for masking fragment operations

– Write operations based on fragment tests

• Set/increment/decrement variable

• Application-defined frame buffers
– Application can define any number of additional pixel buffer objects

– And bind them to frame buffer objects

Draw Buffers
• Specifying which buffer to render to

– glDrawBuffer(enum buffer)
– glDrawBuffers(int size, enum* buffers)

• All drawing operation will be directed to the
indicated buffers

• Enabling specific color planes
– glColorMask(bool r, g, b, a)
– glColorMask(uint r, g, b, a)
– glDepthMask(bool mask)
– glStencilMask{,Separate}(mask)

• Clearing the Buffer
– glClear(mask)

• With combination of
COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, and
STENCIL_BUFFER_BIT

– glClearColor(r, g, b, a), glClearDepth(depth), glClearStencil(int s)

• Specifies the color to set the buffer when performing a clear

– Must be extremely efficient as it touches all pixel but does nothing
useful (special HW in the memory path for this)

For app defined frame buffers

For default framebuffers

Frame buffer & Render buffer
• Definition

– Render buffer: Memory for color, stencil, or depth buffer
– Frame buffer: A combination of the above

• Generate/delete own RenderBuffer object
– glGenRenderBuffer (int n, int* ids), glDeleteRenderBuffers(n, ids)

• Binding
– glBindRenderBuffer(GL_RENDERBUFFER, id)

• Allocate memory for a Renderbuffer
– glRenderBufferStorage(GL_RENDERBUFFER, format, w,h)

• Generate/delete a new Framebuffer object
– glGenFramebuffers(int n, int* ids) glDeleteFramebuffers(n , ids)

• Bind a Framebuffer object for rendering
– glBindFramebuffer(fb_target, fb_id)

• fb_target == GL_DRAW_FRAMEBUFFER/GL_READ_FRAMEBUFFER

– Framebuffer will be used for drawing into or reading from it

• Default frame buffer has id == 0

Framebuffer Attachement
• Attaching a render buffer to a frame buffer

– glFramebufferRenderbuffer(fb_target, attach, rb_target, rb_id)

• attach: GL_{COLOR, DEPTH, STENCIL,
DEPTH_STENCIL}_ATTACHMENT

• fb_target: GL_{DRAW, READ}_FRAMEBUFFER

• rb_target: GL_RENDERBUFFER

• Attaching a texture to a frame buffer
– glFramebufferTexture(fb_target, attach, texture_id, level)

• Level: Mipmaplevel, side of a cube, z-layer in 3D texture

– Undefined behavior results if

• A texture is bound for an active frame buffer and to a texture unit

• A texture is bound for for reading and writing in a copy operation

Reading Pixels Back
• Reading from the framebuffer

– glReadPixels(x, y, w, h, format, type, data)

– Reads from the framebuffer bound to
GL_READ_FRAMEBUFFER

Pixel Storage

Operations

Convert to float

RGBA pixel data in

Clam to [0,1]

Pack

byte, short, int, float, or packed

pixel component data stream

Special Functions
• glFlush()

– Makes sure that all previous commands get send to the GPU

• glFinish()
– Waits until all previous commands have executed

• sync= glFenceSync(cond, 0)
– Send a sync command in the pipeline

• cond = SYNC_GPU_COMMANDS_COMPLETE

– Creates sync object that can later be waited upon with

• glClientWaitSync(sync, flags, timeout)

• glWaitSync(sync, flags, timeout)
– Waits in the client or the server
– Wait in the server is more efficient as commands can already be

sent

• glHint(target, hint)
– Allows to tell OpenGL what quality we would like to see

• glGet*(...)
– Querying the state of OpenGL

OpenGL Guaranties
• Non Guaranties

– Many rules as how things must be rendered

– No exact rule for implementation of graphics operations

• Such as number of bits, coverage by a primitive, etc.

– Different implementations can differ on a per-pixel basis

• Invariants
– Invariants within an implementation

• Same output when given the same input

• Fragment values are independent of

– Content of frame buffer

– Active color buffer, ...

• Independence of parameter values (e.g. for stencil / blending)

– No invariance when switching options on and off

• E.g. stencil, texturing, lighting, ...

• On-screen versus off-screen buffers

