Computer Graphics

- Volume Rendering -

Philipp Slusallek

Overview

- Motivation
- Volume Representation
- Indirect Volume Rendering
- Volume Classification
- Direct Volume Rendering

Applications: Bioinformatics

Applications: Entertainment

Applications: Industrial

Applications: Medical

Applications: Simulations

Image by [RTVG 08]

Volume Processing Pipeline

- Acquisition
- Measure or computation the data
- Filtering
- Picking desired features, cleaning, noise-reduction, re-sampling, reconstruction, classification, ...
- Mapping
- Map N-dimensional data to visual primitives
- Rendering
- Generate the image
- Post-processing
- Enhancements (gamma correction, tone mapping)

Volume Acquisition

- Measuring
- Computer Tomography (CT, X-Ray),
- Magnetic Resonance Imaging (MRI, e-spin)
- Positron-Emission Tomography (PET)
- Ultrasound, sonar
- Electron microscopy
- Confocal microscopy
- Cryo-EM/Light-Tomography
- Simulations
- Essentially everything > 2D
- Visualization of mathematical objects

Filtering

- Raw data usually unsuitable
- Selection of relevant aspects
- Cleaning \& repairing
- Correcting incomplete, out-of-scale values
- Noise reduction and removal
- Classification
- Adaptation of format
- Re-sampling (often to Cartesian grids)
- Transformations
- Volume reconstructing of 3D data from projection
- Create something visible
- Interpretation of measurement values
- Mapping to geometric primitives
- Mapping to parameters (colors, absorption coefficients, ...)
- Rendering
- Surface extraction vs. direct volume rendering
- Single volume vs multiple (possibly overlapping)
- Object-based vs. image-based rendering
- Forward- or backward mappings (rasterization/RT)

Volume Rendering

- Our input?
- Representation of volume
- Our output?
- Colors for given samples (pixels)
- Our tasks?
- Map "weird values" to optical properties
- "Project 1D data values within 3D context to 2D image plane"

VOLUME ACQUISITION AND REPRESENTATION

Data Acquisition

- Simulated Data
- Fluid dynamics
- Heat transfer
- etc...
- Generally "Scientific Visualization"
- Measured Data
- CT (Computed Tomography) scanner

- Reconstructed from rotated series of two-dimensional X-ray images
- Good contrast between high and low density media (e.g. fat and bones)
- MRI (Magnetic Resonance Imaging)
- Based on magnetic/spin response of hydrogen atoms in water
- Better contrast between different soft tissues (e.g. brain, muscles, heart)
- PET (Positron Emission Tomography)
- And many others (also here on campus, e.g. material science)

Data Acquisition

- CT vs. MRI

Volume Representations

- Definition
- 3D field of values: Essentially a 3D scalar or color texture
- Sometimes higher dimensional data (e.g. vector/tensor fields)
- Sampled representation
- 3D lattice of sample points (akin to an image but in 3D)
- Typically equal-distance in each directions
- Generally point cloud in space
- Point neighborhood information (topology)
- Data values at the points
- Procedural
- Mathematical description of values in space
- Sum of Gaussians (e.g. in quantum mechanics)
- Perlin noise (e.g. for non-homogeneous fog)
- Always convertible to sampled representation
- But with loss of information

Volume Organization

- Rectilinear Grids
- Common for scanned data
- May have different spacings
- Curvilinear Grids

- Warped rectilinear grids
- Unstructured Meshes
- Common for simulated data
- E.g. tetrahedral meshes

- Point clouds
- No topological/connection information
- Neighborhood computed on the fly

Reconstruction Filter

- Nearest Neighbor
- Cell-centered sample values

- Tri-Linear Interpolation
- Node-centered sample values

Tri-Linear Interpolation

- Compute Coefficients

$$
\begin{aligned}
& -w x=(x-x 0) /(x 1-x 0) \\
& -w y=(y-y 0) /(y 1-y 0) \\
& -w z=(z-z 0) /(z 1-z 0)
\end{aligned}
$$

- 3-D Scalar Field per Voxel

$$
\begin{array}{lllrl}
- & f(x, y, z) & =(1-w z) & (1-w y) & (1-w x) c 000 \\
- & +(1-w z) & (1-w y) & w x c 100 \\
- & +(1-w z) & w y & (1-w x) c 010 \\
- & +(1-w z) & w y & w x c 110 \\
- & + & w z & (1-w y) & (1-w x) c 001 \\
- & + & w z & (1-w y) & w x c 101 \\
- & + & w z & w y & (1-w x) c 011 \\
- & + & w z & w y & w x c 111
\end{array}
$$

Tri-Linear Interpolation

- Successive Linear Interpolations
- Along X
- $\mathrm{c} 00=(1-w x) \mathrm{c} 000+w x \mathrm{c} 100$
- c01 = (1-wx) c001 + wx c101
- c10 = (1-wx) c010 + wx c110
- c11 = (1-wx) c011 + wx c111
- Along Y
- c0 = (1 - wy) c00 + wy c10
- c1 = (1-wy) c01 + wy c11

- Along Z
- $c=(1-w z) c 0+w z c 1$
- Order of dimensions does not matter

VOLUME MAPPING

Mapping / Classification

- Definition
- Map scalar data values to optical properties
- E.g.
- Optical density
- Albedo
- Emission
- Instances
- Analytical function
- Discrete representation
- Array of sample colors corresponding to sample data values
- Interpolate colors for data values in between sample points

Mapping / Classification

- Physical Mapping
- Physically-based mapping via optical properties of material
- Concentration of soot to optical density, albedo, etc...
- Temperature to emitted blackbody radiation
- Allows for realistic rendering, often intuitively interpretable by us

Mapping / Classification

- Empirical or task-specific mapping (Transfer Function)
- User-defined mapping from data to colors
- Typically stored as an array sample correspondences (color map transfer function)
- Mapping may have no physical interpretation
- Assigning color to pressure, electrostatic potential, electron density, ...
- Highlight specific features of the data
- Isolate bones from fat

Pre/Post-Classification

- Pre-Classification
- First classify data values in sample cells
- Then interpolate classified optical properties
- Post-Classification
- First interpolate data values, then classify interpolated values

Cinematic Rendering

- Nominated for Deutsche Zukunftspreis 2017
- Klaus Engel \& Robert Schneider, Siemens Healthineers

DIRECT VOLUME RENDERING

Direct Volume Rendering

- Definition
- Directly render the volumetric data (only) as translucent material

Scattering in a Volume

Beer's Law

- Volumetric Attenuation
- Assume constant optical density κ_{01}
- Transmittance: $T\left(x_{0}, x_{1}\right)=e^{-\kappa_{01}\left(x_{1}-x_{0}\right)}$
- Transmitted radiance: $L_{o}\left(x_{0}, \omega\right)=T\left(x_{0}, x_{1}\right) L_{o}\left(x_{1}, a\right.$

Analytical Form

- Volumetric Attenuation
- Assume constant optical density κ_{01} (extinction coefficient)
- Transmittance: $T\left(x_{0}, x_{1}\right)=e^{-\kappa_{01}\left(x_{1}-x_{0}\right)}$
- Transmitted radiance: $T\left(x_{0}, x_{1}\right) L_{o}\left(x_{1}, \omega\right)$
- Volumetric Contributions
- Also assume (constant) volume radiance $L_{v}(x, \omega)$ [Watt/(sr m^3)]
- Contributed radiance: $\left(1-T\left(x_{0}, x_{1}\right)\right) L_{v}\left(x_{01}, \omega\right)$
- Volumetric Equation
- Radiance reaching the observer
- Emission within segment + transmitted background radiance
- $L_{o}\left(x_{0}, \omega\right)=\left(1-T\left(x_{0}, x_{1}\right)\right) L_{v}\left(x_{01}, \omega\right)+T\left(x_{0}, x_{1}\right) L_{o}\left(x_{1}, \omega\right)$

Ambient Homogenous Fog

- Constant-Optical Density
- Volumetric Contributions
- Assume constant volumetric albedo $\rho_{v}(x)$
- Assume constant ambient lighting L_{a} (everywhere, no shadowing)
- Leads to constant volume radiance $L_{v}(x, \omega)=L_{a} \rho_{v}$
- Pervasive Fog
- Entry at camera, exit at intersection, or inf.
- Algorithm
- Compute surface illumination $L_{o}\left(x_{1}, \omega\right)$
- Modulate shadow visibility by transmittance between surface and light source
- Compute volume transmittance $T\left(x_{0}, x_{1}\right)$ and attenuate surface radiance
- Add contributions from volume radiance

Ambient Homogeneous Fog

- Pros
- Simple
- Efficient
- Cons
- No true light contributions
- No volumetric shadows

Ray-Marching

- Riemann Summation
- Non-constant optical density / non-constant volume radiance
- Sample volume at discrete locations
- Assume constant density and volume radiance in each interval

Ray-Marching

- Homogeneous Segments

$$
\begin{aligned}
& -L_{o}\left(x_{0}, \omega\right)=\left(1-e^{-\kappa_{01} \Delta x}\right) L_{v}\left(x_{01}, \omega\right)+e^{-\kappa_{01} \Delta x} L_{o}\left(x_{1}, \omega\right) \\
& -L_{o}\left(x_{1}, \omega\right)=\left(1-e^{-\kappa_{12} \Delta x}\right) L_{v}\left(x_{12}, \omega\right)+e^{-\kappa_{12} \Delta x} L_{o}\left(x_{2}, \omega\right) \\
& -L_{o}\left(x_{2}, \omega\right)=\ldots
\end{aligned}
$$

- Recursive Substitution

$$
\begin{aligned}
& L_{o}\left(x_{0}, \omega\right)=\left(1-e^{-\kappa_{01} \Delta x}\right) L_{v}\left(x_{01}, \omega\right)+e^{-\kappa_{01} \Delta x}\left(\left(1-e^{-\kappa_{12} \Delta x}\right) L_{v}\left(x_{12}, \omega\right)+e^{-\kappa_{12} \Delta x}(\ldots)\right) \\
& \quad=\left(1-e^{-\kappa_{01} \Delta x}\right) L_{v}\left(x_{01}, \omega\right)+e^{-\kappa_{01} \Delta x}\left(1-e^{-\kappa_{12} \Delta x}\right) L_{v}\left(x_{12}, \omega\right)+e^{-\kappa_{01} \Delta x} e^{-\kappa_{12} \Delta x}(\ldots) \\
& \quad=\sum_{i=0}^{n-1}\left(\prod_{j=0}^{i-1} e^{-\kappa_{j, j+1} \Delta x}\right)\left(1-e^{-\kappa_{i, i+1} \Delta x}\right) L_{v}\left(x_{i, i+1}, \omega\right)+\left(\prod_{j=0}^{n-1} e^{-\kappa_{j, j+1} \Delta x}\right) L_{o}\left(x_{n}, \omega\right)
\end{aligned}
$$

Ray-Marching (front to back)

- L = 0;
- T=1;
- t = 0; // t_enter;
- while(t < t_exit)
$-\mathrm{dt}=\min (\mathrm{t}$ step, t _exit -t$)$;
- $\mathrm{P}=$ ray.origin + ($\mathrm{t}+\mathrm{dt} / 2$) * ray.direction;
$-b=\exp \left(-\right.$ volume.density $\left.(P)^{*} d t\right)$;
$-L+=T^{*}(1-b)$ * $L v(P)$;
$-\mathrm{T}^{*}=\mathrm{b}$;
- // Optional early termination
- t += t_step;
- L += T * trace(ray.origin + t_exit * ray.direction, ray.direction);
- return L;

Homogeneous Fog

- Constant-optical density
- Non-constant volume radiance
- Similar to surface reflected radiance (i.e. rendering equation)
- Use phase function $\rho(x, \Delta \omega)$, (e.g. $\frac{\rho_{v}}{4 \pi}$) instead of BRDF*cosine
- Modulate shadow visibility by transmittance

Homogeneous Fog

- E.g. Anisotropic Point Light
- Modulate visibility at surfaces by transmittance

$$
L_{r l}\left(x, \omega_{o}\right)=\frac{I(-\omega)}{\|x-y\|^{2}} V(x, y) T(x, y) f_{r}\left(\omega(x, y), x, \omega_{o}\right) \cos \theta_{i}
$$

- Modulate visibility at each volume sample by transmittance

$$
L_{v}\left(x, \omega_{o}\right)=\frac{I(-\omega)}{\|x-y\|^{2}} V(x, y) T(x, y) \frac{\rho_{v}}{4 \pi}
$$

Homogeneous Fog

- Inverse Square Law
- Volumetric Shadows
- Projective Light

Heterogeneous Fog

- Assumptions
- Non-constant-optical density
- Non-constant volume radiance
- Shadow visibility modulated by transmittance
- Ray-marched shadow rays at surface
- Ray-marched shadow rays at each volume sample!!

$$
T\left(x_{0}, x_{n}\right)=\prod_{j=0}^{n-1} e^{-\kappa_{j, j+1} \Delta x}
$$

Heterogeneous Fog

Ray-Casting

- Early Ray Termination
- Abort ray-marching when subsequent contributions are negligible
- if (T < epsilon) return L;
- Very effective in dense volumes
- Also avoids ray-marching to infinity
- Grid Traversal
- 3-D DDA
- Ray-marching
- Adaptive Marching

- Bulk integration over homogeneous regions (e.g. octree, bricks)
- Pre-compute and store maximum step size separately
- Increasing step size with decreasing accumulated transmittance
- Vertex Connection and Merging \& Joint Path Sampling [Siggraph'14]

Full Volumetric Light Simulation

- Taking into account multiple scattering in the volume

Full Volumetric Light Simulation

- Including Shadows, Caustics, etc.

