Computer Graphics

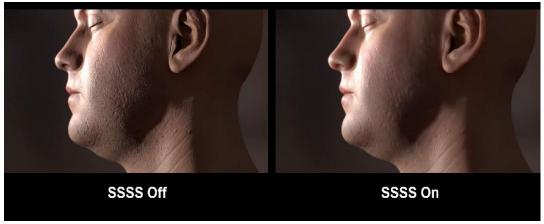
- Material Models -

Philipp Slusallek

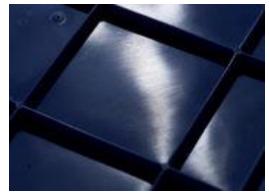
REFLECTANCE PROPERTIES

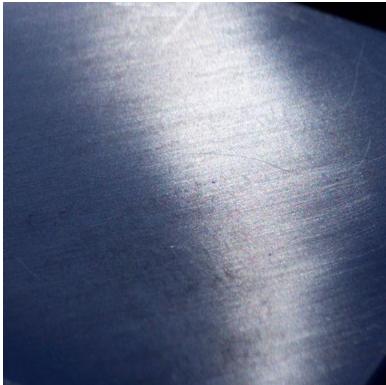
Appearance Samples

- How do materials reflect light?
 - At the same point / in the neighborhood (subsurface scattering)

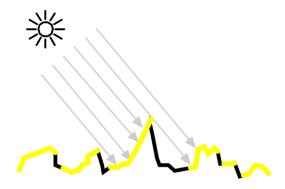


Anisotropic surfaces

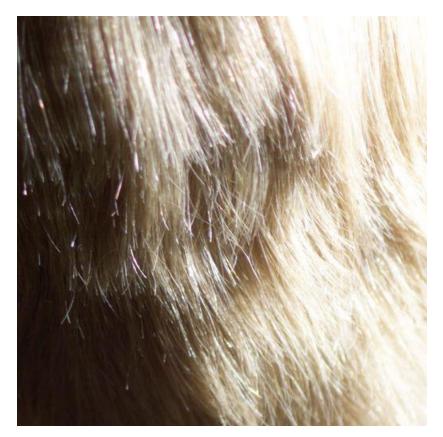




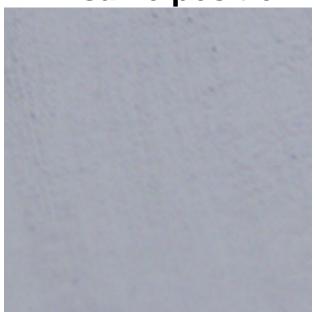
Complex surface meso-structure

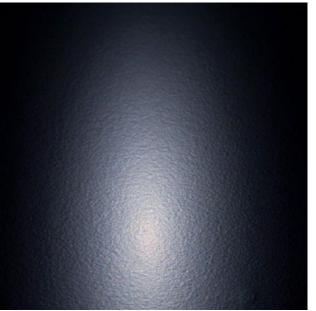


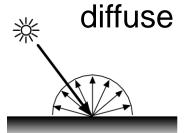
Lots of details: Fibers

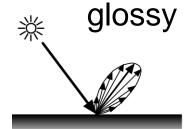


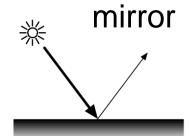
Photos of samples with light source at exactly the same position











How to describe materials?

Surface roughness

Cause of different reflection properties:

Perfectly smooth: Mirror reflection

• Slightly rough: Glossy highlights

Very rough: Diffuse reflection,

light reflected many times, looses directionality

Geometry

Macro structure: Described as explicit geometry (e.g. triangles)

Micro structure: Captured in scattering function (BRDF)

Meso structure: Difficult to handle: integrate into BRDF (offline)

simulation), use geometry and simulate (online)

Representation of reflection properties

- Bidirectional reflection distribution function (BRDF)
 - For reflections at a single point (approx.)
- More complex scattering functions (e.g. subsurface scattering)

Goal: Relightable representation of appearance

Reflection Equation - Reflectance

Reflection equation

$$L_o(x, \omega_o) = \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x, \omega_i) \cos\theta_i d\omega_i$$

BRDF

Ratio of reflected radiance to incident irradiance

$$f_r(\omega_i, x, \omega_o) = \frac{dL_o(x, \omega_o)}{dE_i(x, \omega_i)}$$
 Units: $\left[\frac{1}{sr}\right]$

BRDF

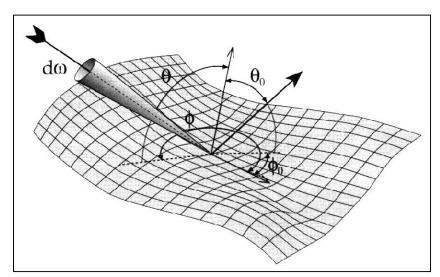
BRDF describes surface reflection

- for light incident from direction $\omega_i = (\theta_i, \varphi_i)$
- observed from direction $\omega_o = (\theta_o, \varphi_o)$

Bidirectional

- Depends on 2 directions ω_i , ω_o and position x (6-D function)

$$f_r(\omega_i, x, \omega_o) = \frac{dL_o(x, \omega_o)}{dE_i(x, \omega_i)} = \frac{dL_o(x, \omega_o)}{L_i(x, \omega_i) cos\theta_i d\omega_i}$$

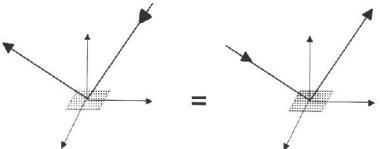


BRDF Properties

Helmholtz reciprocity principle

- BRDF remains unchanged if incident and reflected directions are interchanged
- Due to physical law of time reversal

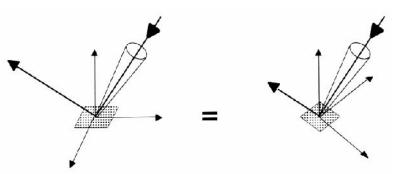
$$f_r(\omega_i, \omega_o) = f_r(\omega_o, \omega_i)$$



No surface structure: Isotropic BRDF

- Reflectivity independent of rotation around surface normal
- BRDF has only 3 instead of 4 directional degrees of freedom

$$f_r(x, \theta_i, \theta_o, \varphi_o - \varphi_i)$$



BRDF Properties

Characteristics

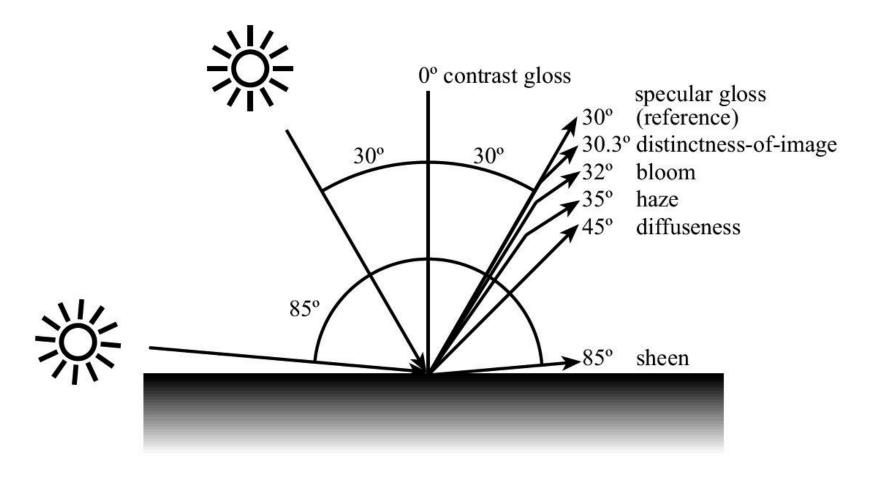
- BRDF units
 - Inverse steradian: sr^{-1} (not really intuitive)
- Range of values: distribution function is positive, can be infinite
 - From 0 (no reflection in that direction)
 - to ∞ (perfect reflection into exactly one direction, δ -function)
- Energy conservation law
 - Absorption physically unavoidable, no self-emission
 - Integral of f_r over *outgoing* directions integrates to less than one
 - For any incoming direction

$$\int_{\Omega_{+}} f_{r}(\omega_{i}, x, \omega_{o}) \cos \theta_{o} d\omega_{o} \leq 1, \qquad \forall \omega_{i}$$

- Reflection only at the point of entry $(x_i = x_o)$
 - Ignoring subsurface scattering (SSS)

Standardized Gloss Model

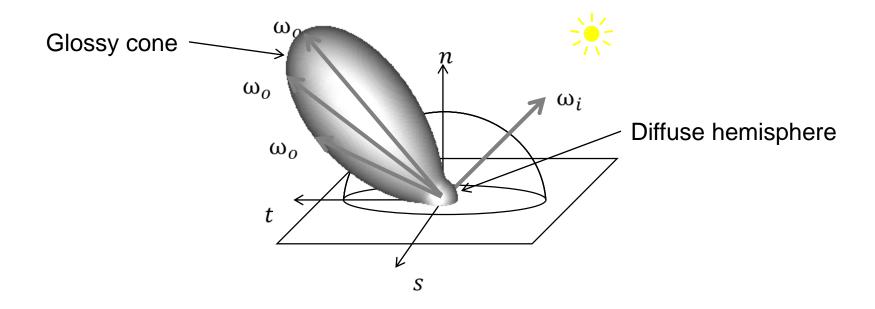
- Industry often uses only a subset of BRDF values
 - Reflection only measured at discrete set of angles, in plane



Reflection on an Opaque Surface

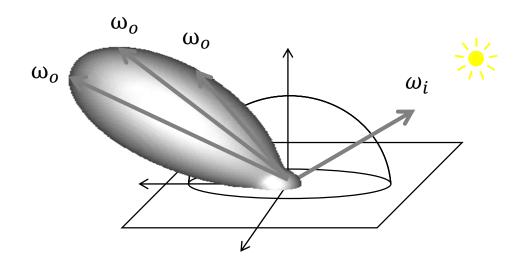
BRDF is often shown as a slice of the 6D function

- Given point x and given incident direction ω_i
 - Show 2D polar lot (intensity as length of vector from origin)
- Often consists of some mostly diffuse component (here small)
 - and a somewhat glossy component (here rather large)



Reflection on an Opaque Surface

- 2D plot varies with incident direction
 - (and possibly location)

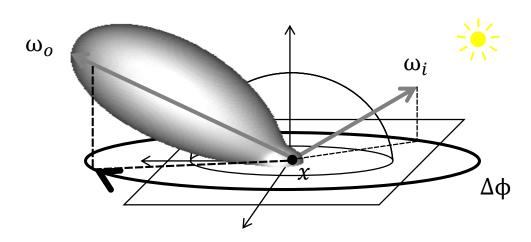


Homog. & Isotropic BRDF – 3D

- Invariant with respect to rotation about the normal
 - Homogeneous and isotropic across surface
 - Only depends on azimuth difference to incoming angle

$$f_r((\theta_i, \varphi_i) \to (\theta_o, \varphi_o)) \Longrightarrow$$

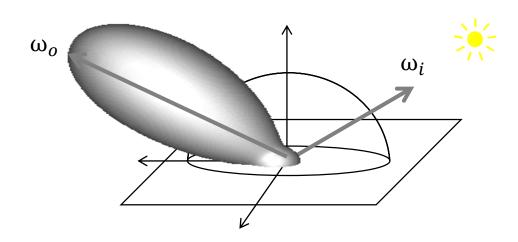
$$f_r(\theta_i \to \theta_o, (\varphi_i - \varphi_o)) = f_r(\theta_i \to \theta_o, \Delta\varphi)$$



Homogeneous BRDF – 4D

- Homogeneous bidirectional reflectance distribution function
 - Ratio of reflected radiance to incident irradiance

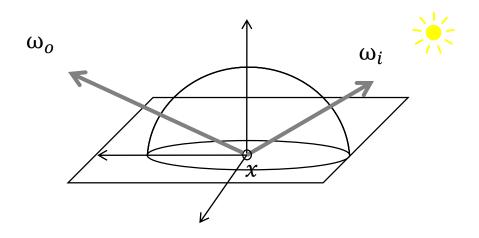
$$f_r(\omega_i \to \omega_o) = \frac{dL_o(\omega_o)}{dE_i(\omega_i)}$$



Spatially Varying BRDF – 6D

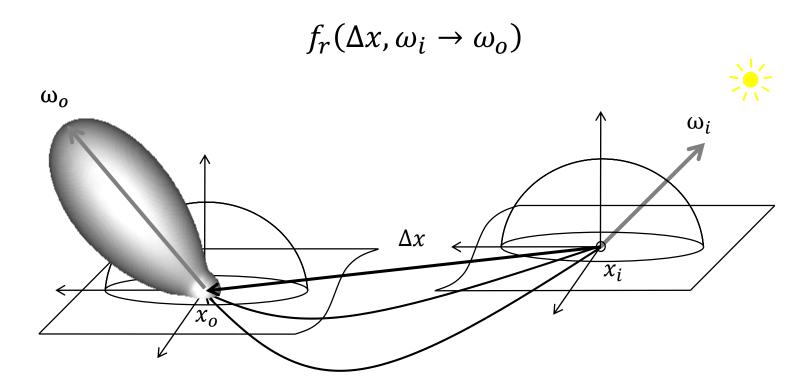
- Heterogeneous materials (standard model for BRDF)
 - Dependent on position, and two directions
 - Reflection at the point of incidence

$$f_r(x, \omega_i \to \omega_o)$$



Homogeneous BSSRDF – 6D

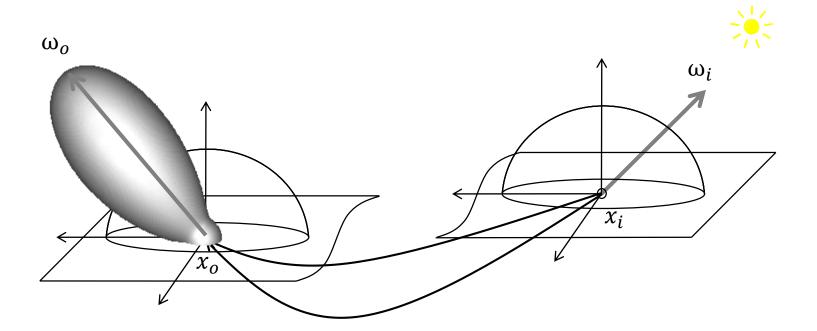
- Homogeneous bidirectional scattering surface reflectance distribution function
 - Assumes a homogeneous and flat surface
 - Only depends on the difference vector to the outgoing point



BSSRDF - 8D

Bidirectional scattering surface reflectance distribution function

$$f_r((x_i, \omega_i) \to (x_o, \omega_o))$$

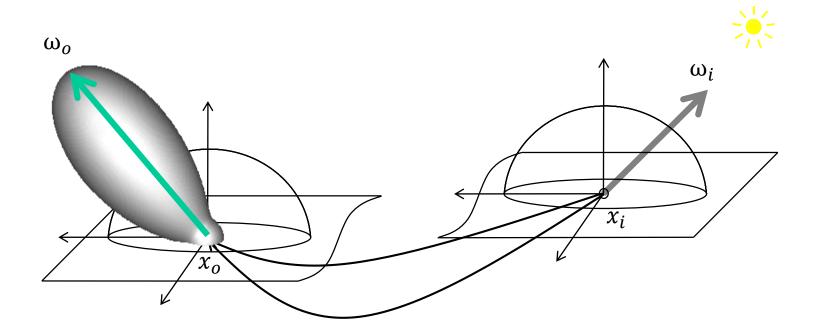


Generalization – 9D

Generalizations

Add wavelength dependence

$$f_r(\lambda, (x_i, \omega_i) \to (x_o, \omega_o))$$

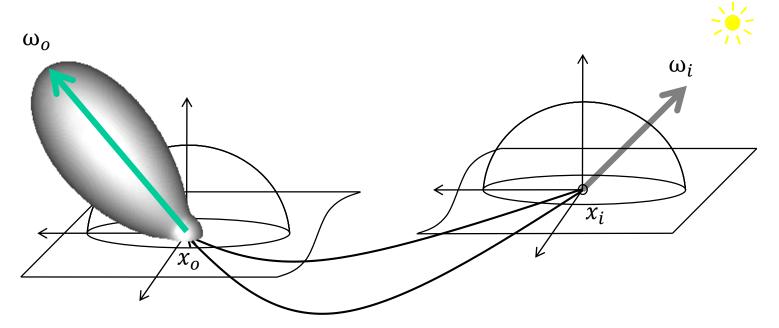


Generalization – 10D

Generalizations

- Add wavelength dependence
- Add fluorescence
 - Change to longer wavelength during scattering

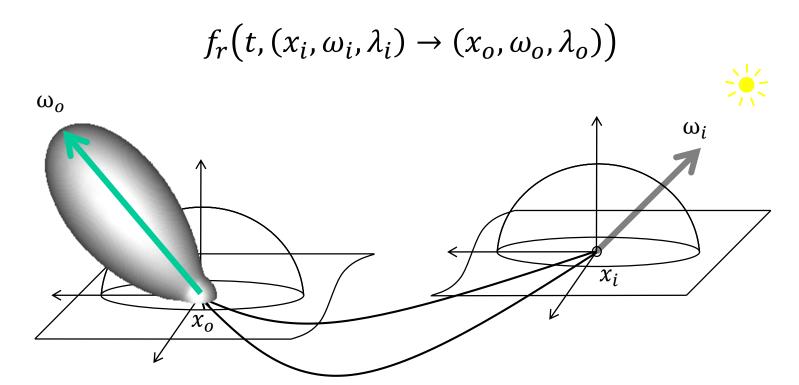
$$f_r((x_i, \omega_i, \lambda_i) \to (x_o, \omega_o, \lambda_o))$$



Generalization – 11D

Generalizations

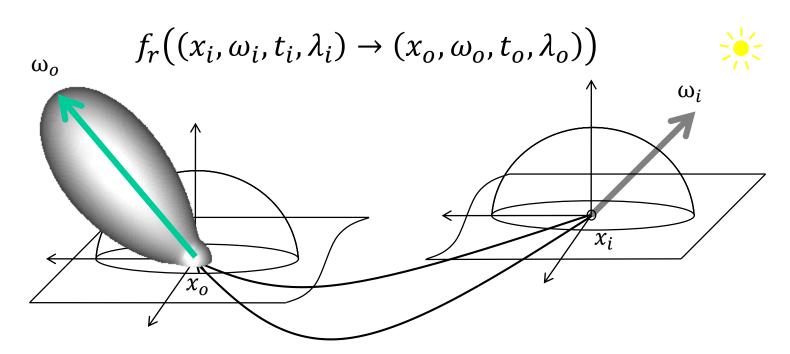
- Add wavelength dependence
- Add fluorescence (change to longer wavelength for reflection)
- Time varying surface characteristics



Generalization – 12D

Generalizations

- Add wavelength dependence
- Add fluorescence (change to longer wavelength for reflection)
- Time varying surface characteristics
- Phosphorescence
 - Temporal storage of light



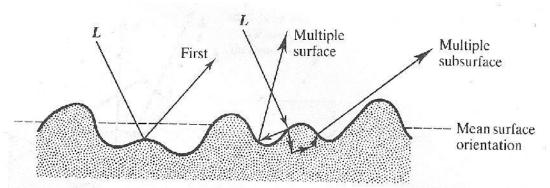
Reflectance

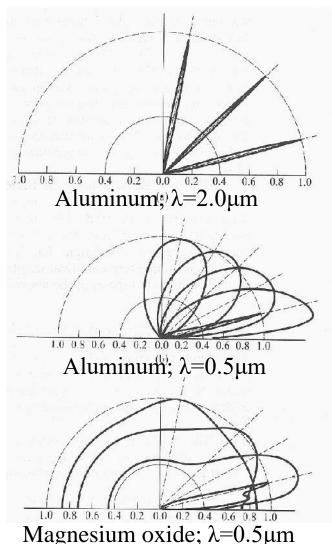
Reflectance may vary with

- Illumination angle
- Viewing angle
- Wavelength
- (Polarization, ...)

Variations due to

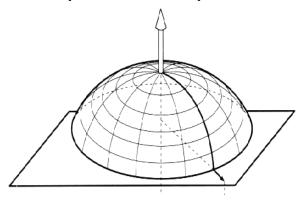
- Absorption
- Surface micro-geometry
- Index of refraction / dielectric constant
- Scattering

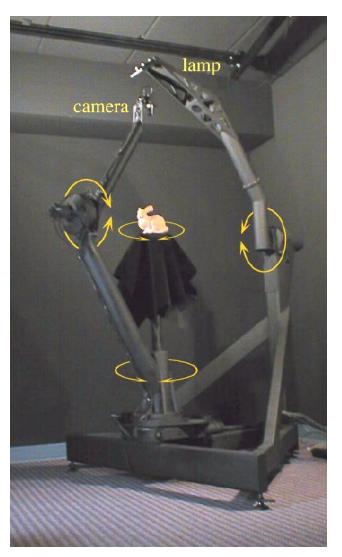




BRDF Measurement

- Gonio-Reflectometer
- BRDF measurement
 - Point light source position (θ_i, φ_i)
 - Light detector position (θ_o, φ_o)
- 4 directional degrees of freedom
- BRDF representation
 - m incident direction samples
 - n outgoing direction samples
 - m*n reflectance values (large!!!)
 - Additional position dependent (6D)





Stanford light gantry

Rendering from Measured BRDF

Linearity, superposition principle

- Continuous illumin.: integrating light distribution against BRDF
- Sampled illumination: superimposing many point light sources

Interpolation

Look-up of BRDF values during rendering

Sampled BRDF must be filtered

BRDF Modeling

- Fitting of parameterized BRDF models to measured data
 - Continuous, analytic function
 - No interpolation
 - Typically fast evaluation

Spherical Harmonics

Red is positive, green negative [Wikipedia]

Representation in a basis

- Most appropriate: Spherical harmonics
 - Ortho-normal function basis on the sphere
- Mathematically elegant filtering, illumination-BRDF integration

BRDF Modeling

Phenomenological approach (not physically correct)

- Description of visual surface appearance
- Composition of different terms:

Ideal diffuse reflection

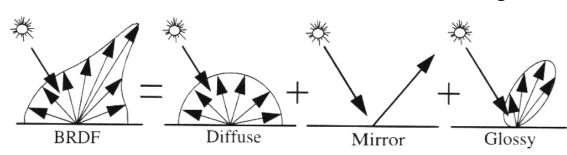
- Lambert's law, interactions within material
- Matte surfaces

Ideal specular reflection

- Reflection law, reflection on a planar surface
- Mirror

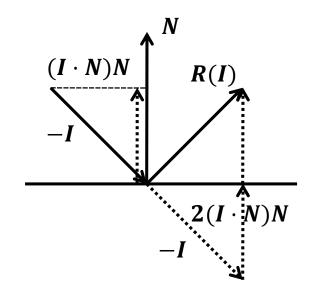
Glossy reflection

- Directional diffuse, reflection on surface that is somewhat rough
- Shiny surface
- Glossy highlights

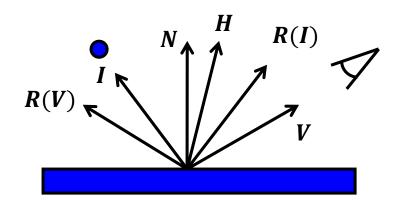


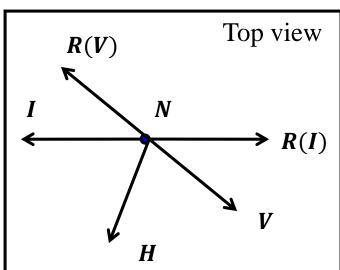
Reflection Geometry

- Direction vectors (normalize):
 - N: Surface normal
 - I: Light source direction vector
 - V: Viewpoint direction vector
 - -R(I): Reflection vector
 - $R(I) = -I + 2(I \cdot N)N$
 - H: Halfway vector
 - H = (I + V) / |I + V|



Tangential surface: local plane

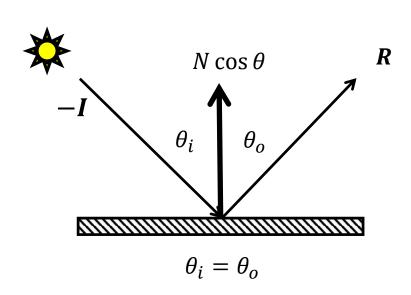


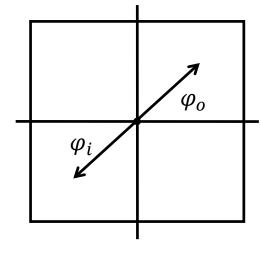


Ideal Specular Reflection

- Angle of reflectance equal to angle of incidence
- Reflected vector in a plane with incident ray and surface normal vector

$$R + I = 2 \cos \theta N = 2(I \cdot N)N \Longrightarrow$$
$$R(I) = -I + 2(I \cdot N) N$$





$$\varphi_o = \varphi_i + 180^\circ$$

Mirror BRDF

• Dirac Delta function $\delta(x)$

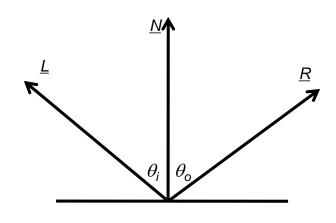
- $-\delta(x)$: zero everywhere except at x=0
- Unit integral iff domain contains x = 0 (else zero)

$$\begin{split} f_{r,m}(\omega_i, x, \omega_o) &= \rho_s(\theta_i) \frac{\delta(\cos\theta_i - \cos\theta_o)}{\cos\theta_i} \delta(\varphi_i - \varphi_o \pm \pi) \\ L_o(x, \omega_o) &= \int_{\Omega_+} f_{r,m}(\omega_i, x, \omega_o) L_i(x, \omega_i) \cos\theta_i d\omega_i = \\ \rho_s(\theta_o) L_i(x, \theta_o, \varphi_o \pm \pi) \end{split}$$

• Specular reflectance $ho_{\scriptscriptstyle S}$

- Ratio of reflected radiance in specular direction and incoming radiance
- Dimensionless quantity between 0 and 1

$$\rho_s(x,\theta_i) = \frac{L_o(x,\theta_o)}{L_i(x,\theta_o)}$$



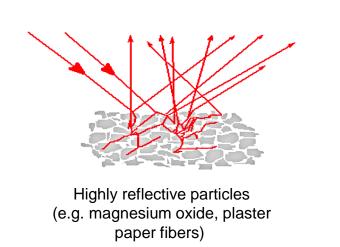
"Diffuse" Reflection

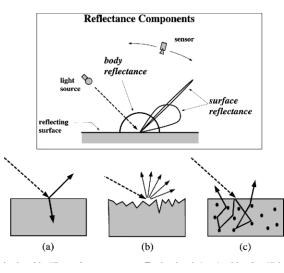
Theoretical explanation

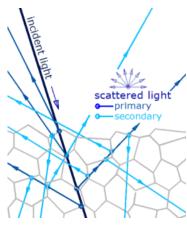
Multiple scattering with in the material (at very short range)

Experimental realization

- Pressed magnesium oxide powder
 - Random mixture of tiny, highly reflective particles
- Almost never valid at grazing angles of incidence
- Paint manufacturers attempt to create ideal diffuse paints







Highly reflective/refractive foam-like materials

Diffuse Reflection Model

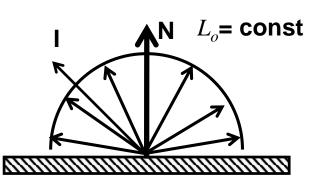
- Light equally likely to be reflected in any output direction (independent of input direction, idealized)
- Constant BRDF

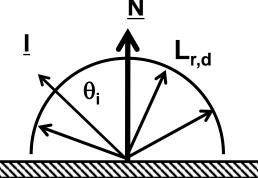
$$f_{r,d}(\omega_i, x, \omega_o) = k_d = const$$

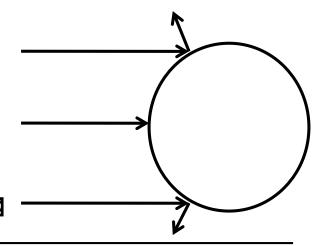
$$L_o(x, \omega_o) = k_d \int_{\Omega_+} L_i(x, \omega_i) \cos \theta_i \, d\omega_i = k_d E$$

- $-k_d$: diffuse coefficient, material property [1/sr]
- For each point light source

$$- L_{r,d} = k_d L_i \cos \theta_i = k_d L_i (\underline{I} \cdot \underline{N})$$



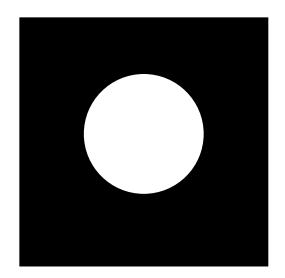




Lambertian Objects

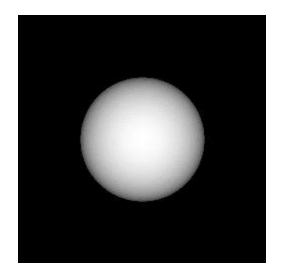
Self-luminous spherical Lambertian light source

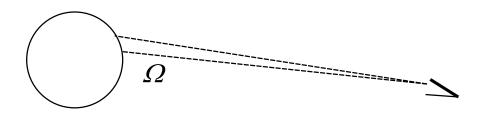
 $\Phi_0 \propto L_0 \cdot \Omega$

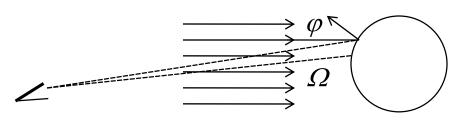


Eye-light illuminated spherical Lambertian reflector

$$\Phi_1 \propto L_i \cdot \cos \theta \cdot \Omega$$

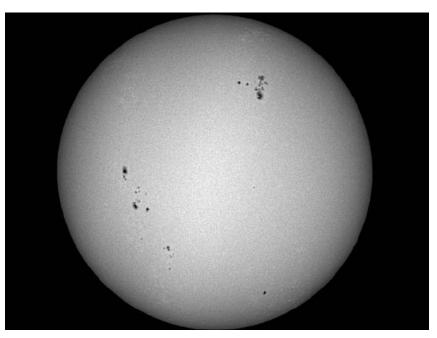






Lambertian Objects (?)

The Sun



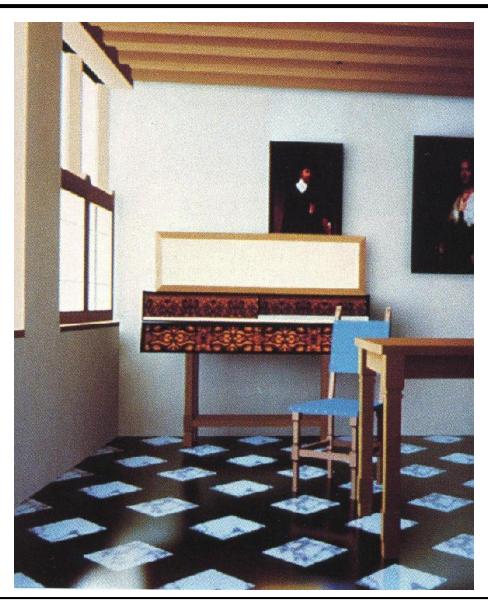
- Some absorption in photosphere
- Path length through photosphere longer from the Sun's rim

The Moon

- Surface covered with fine dust
- Dust visible best from slanted viewing angle

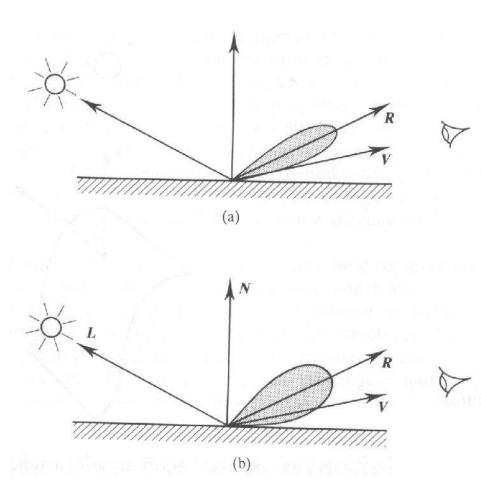
⇒ Neither the Sun nor the Moon are Lambertian

Glossy Reflection



Glossy Reflection

- Due to surface roughness
- Empirical models (phenomenological)
 - Phong
 - Blinn-Phong
- Physically-based models
 - Blinn
 - Cook & Torrance

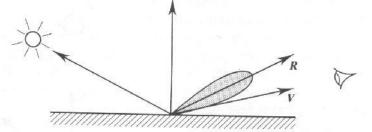


Phong Glossy Reflection Model

Simple experimental description: Cosine power lobe

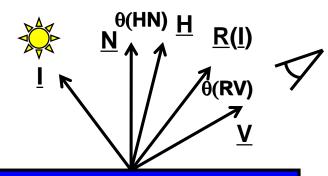
$$f_r(\omega_i, x, \omega_o) = k_s(R(I) \cdot V)^{k_e} / I \cdot N$$

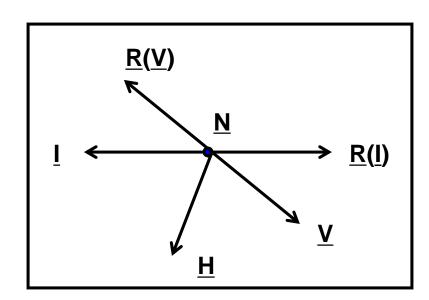
- Take angle to reflection direction to some
 - $-L_{r,s} = L_i k_s \cos^{ke} \Theta_{RV}$



Issues

- Not energy conserving/reciprocal
- Plastic-like appearance
- Dot product & power
 - Still widely used in CG

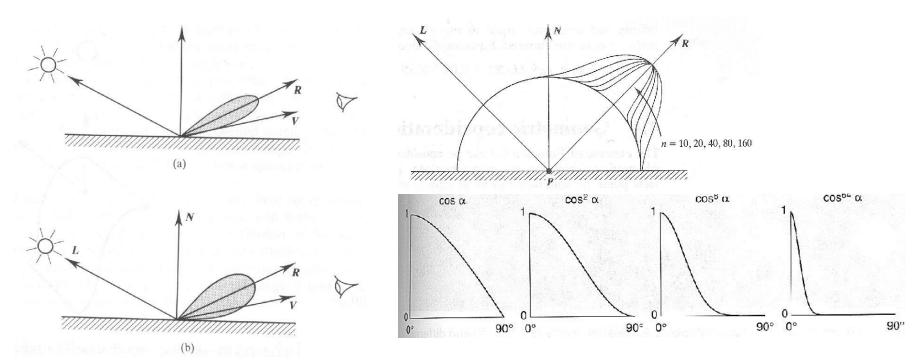




Phong Exponent k_e

$$f_r(\omega_i, x, \omega_o) = k_s(R(I) \cdot V)^{k_e} / I \cdot N$$

Determines size of highlight



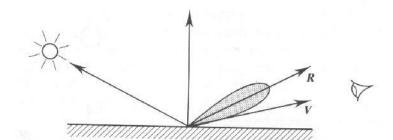
- Beware: Non-zero contribution into the material !!!
 - Cosine is non-zero between -90 and 90 degrees

Blinn-Phong Glossy Reflection

Same idea: Cosine power lobe

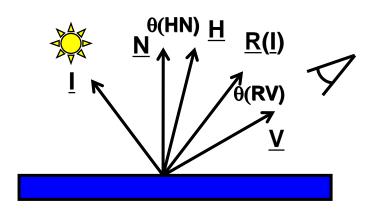
$$f_r(\omega_i, x, \omega_o) = k_s (H \cdot N)^{k_e} / I \cdot N$$

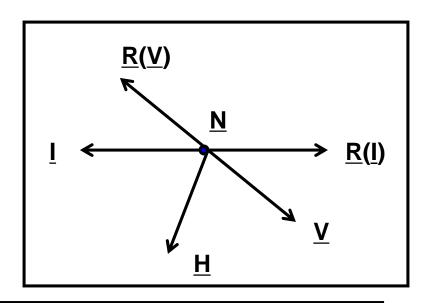
$$-L_{r,s} = L_i k_s \cos^{ke} \Theta_{HN}$$



Dot product & power

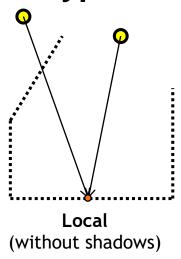
- $\theta_{RV} \rightarrow \theta_{HN}$
- Special case: Light source, viewer far away
 - *I*, *R* constant: *H* constant
 - θ_{HN} less expensive to compute

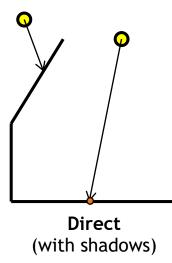


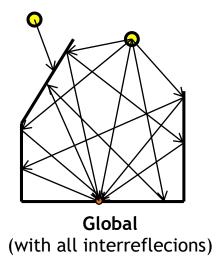


Different Types of Illumination

Three types of illumination







Ambient Illumination

- Global illumination is costly to compute
- Indirect illumination (through interreflections) is typically smooth
- \rightarrow Approximate via a constant term $L_{i,a}$ (incoming ambient illum)
- Has no incoming direction, provide ambient reflection term k_a

$$L_o(x, \omega_o) = k_a L_{i,a}$$

Full Phong Illumination Model

Phong illumination model for multiple point light sources

$$L_{r} = k_{a}L_{i,a} + k_{d} \sum_{l} L_{l}(I_{l} \cdot N) + k_{s} \sum_{l} L_{l}(R(I_{l}) \cdot V)^{k_{e}} (Phong)$$

$$L_{r} = k_{a}L_{i,a} + k_{d} \sum_{l} L_{l}(I_{l} \cdot N) + k_{s} \sum_{l} L_{l}(H_{l} \cdot N)^{k_{e}} (Blinn)$$

- Diffuse reflection (contribution only depends on incoming cosine)
- Ambient and Glossy reflection (Phong or Blinn-Phong)
- Typically: Color of specular reflection k_s is white
 - Often separate specular and diffuse color (common extension, OGL)
- Empirical model!
 - Contradicts physics
 - Purely local illumination
 - Only direct light from the light sources, constant ambient term
- Optimization: Lights & viewer assumed to be far away

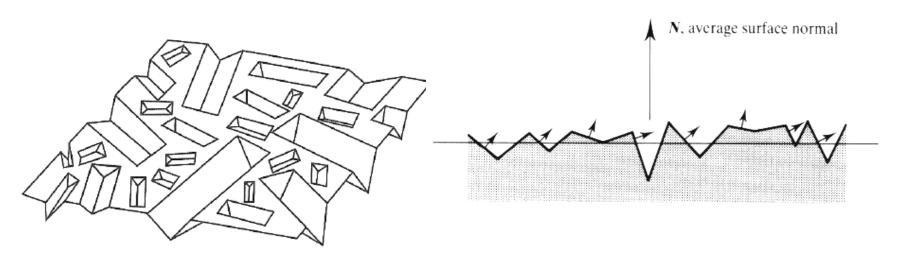
Microfacet BRDF Model

Physically-Inspired Models

- Isotropic microfacet collection
- Microfacets assumed as perfectly smooth reflectors

BRDF

- Distribution of microfacets
 - Often probabilistic distribution of orientation or V-groove assumption
- Planar reflection properties
- Self-masking, shadowing



Ward Reflection Model

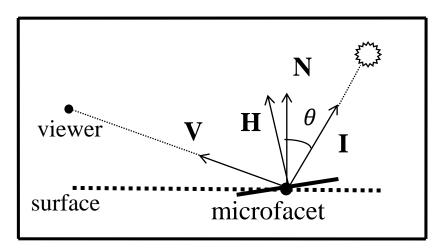
BRDF

$$f_r = \frac{\rho_d}{\pi} + \frac{\rho_s}{\sqrt{(I \cdot N)(V \cdot N)}} \frac{\exp\left(-\frac{tan^2 \angle H, N}{\sigma^2}\right)}{4\pi\sigma^2}$$
tandard deviation (RMS) of surface slope

- σ standard deviation (RMS) of surface slope
- Simple expansion to anisotropic model (σ_x, σ_y)
- Empirical, not physics-based

Inspired by notion of reflecting microfacets

- Convincing results
- Good match to measured data



Cook-Torrance Reflection Model

Cook-Torrance reflectance model

- Is based on the microfacet model
- BRDF is defined as the sum of a diffuse and a specular component:

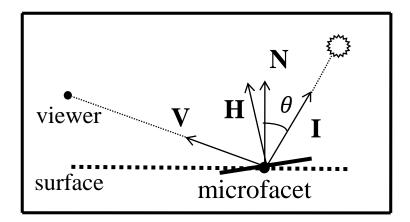
$$f_r = \kappa_d \rho_d + \kappa_s \rho_s; \quad \rho_d + \rho_s \le 1$$

where ρ_s and ρ_d are the specular and diffuse coefficients.

– Derivation of the specular component κ_s is based on a physically derived theoretical reflectance model

Cook-Torrance Specular Term

$$\kappa_{S} = \frac{F_{\lambda}DG}{\pi(N \cdot V)(N \cdot I)}$$



- D : Distribution function of microfacet orientations
- G: Geometrical attenuation factor
 - represents self-masking and shadowing effects of microfacets
- F_{λ} : Fresnel term
 - computed by Fresnel equation
 - Fraction of specularly reflected light for each planar microfacet
- N-V: Proportional to visible surface area
- N-I: Proportional to illuminated surface area

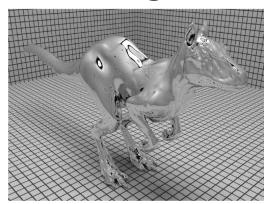
Electric Conductors (e.g. Metals)

- Assume ideally smooth surface
- Perfect specular reflection of light, rest is absorbed
- Reflectance is defined by Fresnel formula based on:
 - Index of refraction η
 - Absorption coefficient κ
 - Both wavelength dependent

Object	η	k
Gold	0.370	2.820
Silver	0.177	3.638
Copper	0.617	2.63
Steel	2.485	3.433

Given for parallel and perpendicular polarized light

$$r_{\parallel}^{2} = \frac{(\eta^{2} + k^{2})\cos\theta_{i}^{2} - 2\eta\cos\theta_{i} + 1}{(\eta^{2} + k^{2})\cos\theta_{i}^{2} + 2\eta\cos\theta_{i} + 1}$$
$$r_{\perp}^{2} = \frac{(\eta^{2} + k^{2}) - 2\eta\cos\theta_{i} + \cos\theta_{i}^{2}}{(\eta^{2} + k^{2}) + 2\eta\cos\theta_{i} + \cos\theta_{i}^{2}}.$$

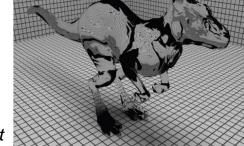


- $-\theta_i$, θ_t : Angle between ray & plane, incident & transmitted
- For unpolarized light:

$$F_{\rm r} = \frac{1}{2}(r_{\parallel}^2 + r_{\perp}^2)$$

Dielectrics (e.g. Glass)

- Assume ideally smooth surface
- Non-reflected light is perfectly transmitted: 1 F_r
 - They do not conduct electricity
- Fresnel formula depends on:
 - Refr. index: speed of light in vacuum vs. medium
 - Refractive index in incident medium $\eta_i = c_0 / c_i$
 - Refractive index in transmitted medium $\eta_t = c_0 / c_t$



Given for parallel and perpendicular polarized light

$$r_{\parallel} = \frac{\eta_{t} \cos \theta_{i} - \eta_{i} \cos \theta_{t}}{\eta_{t} \cos \theta_{i} + \eta_{i} \cos \theta_{t}}$$
$$r_{\perp} = \frac{\eta_{i} \cos \theta_{i} - \eta_{t} \cos \theta_{t}}{\eta_{i} \cos \theta_{i} + \eta_{t} \cos \theta_{t}},$$

Medium	Index of refraction η	
Vacuum	1.0	
Air at sea level	1.00029	
Ice	1.31	
Water (20° C)	1.333	
Fused quartz	1.46	
Glass	1.5–1.6	
Sapphire	1.77	
Diamond	2.42	

For unpolarized light:

$$F_{\rm r} = \frac{1}{2}(r_{\parallel}^2 + r_{\perp}^2)$$

Microfacet Distribution Functions

- Isotropic Distributions $D(\omega) \Rightarrow D(\alpha)$ $\alpha = \angle N, H$
 - $-\alpha$: angle to average normal of surface
 - m : average slope of the microfacets
- Blinn:

$$D(\alpha) = \cos^{-\frac{\ln 2}{\ln \cos m}}(\alpha)$$

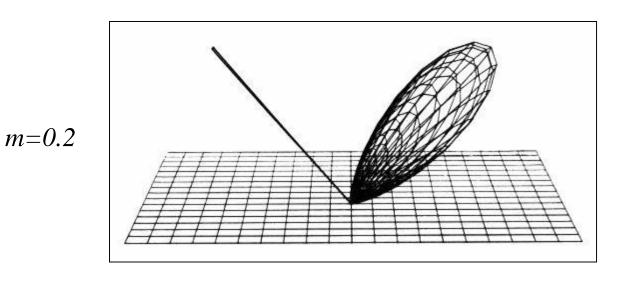
- Torrance-Sparrow
 - Gaussian

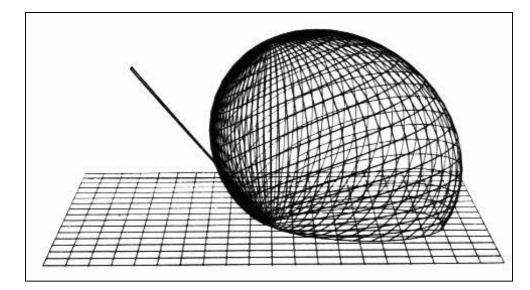
$$D(\alpha) = e^{-\ln 2\left(\frac{\alpha}{m}\right)^2}$$

- Beckmann
 - Used by Cook-Torrance

$$D(\alpha) = \frac{1}{\pi m^2 \cos^4 \alpha} e^{-(\frac{\tan \alpha}{m})^2}$$

Beckman Microfacet Distribution





m = 0.6

Geometric Attenuation Factor

- V-shaped grooves
- Fully illuminated and visible

$$G = 1$$

Partial masking of reflected light

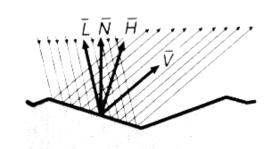
$$G = \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{V})}{(\underline{V} \cdot \underline{H})}$$

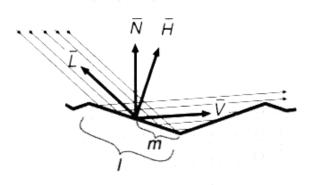
Partial shadowing of incident light

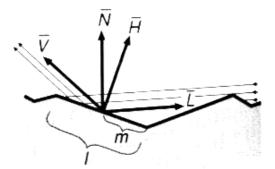
$$G = \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{I})}{(\underline{V} \cdot \underline{H})}$$

Final

$$G = min\left\{1, \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{V})}{(\underline{V} \cdot \underline{H})}, \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{I})}{(\underline{V} \cdot \underline{H})}\right\}$$

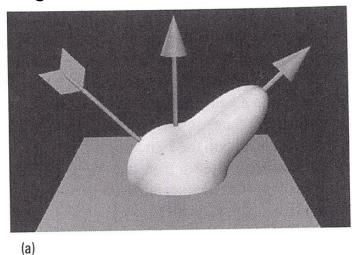






Comparison Phong vs. Torrance

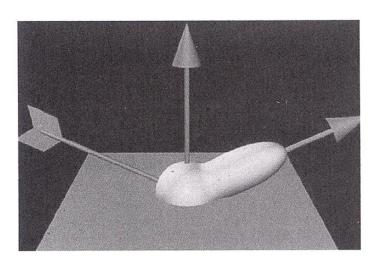
Phong:

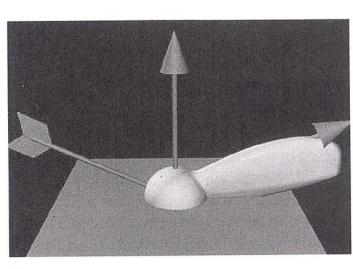


Torrance:

(c)







(d)

(b)

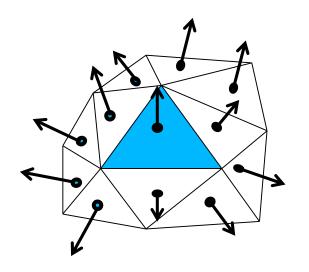
SHADING

What is necessary?

- View point position
- Light source description
- Reflectance model
- Surface normal / local coordinate frame

Surface Normals – Triangle Mesh

- Most simple: Constant Shading
 - Fixed color per polygon/triangle
- Shading Model: Flat Shading
 - Single per-surface normal
 - Single color per polygon
 - Evaluated at one of the vertices (→ OGL) or at center





[wikipedia]

Surface Normals – Triangle Mesh

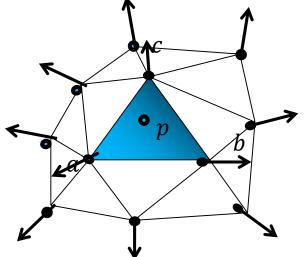
Shading Model: Gouraud Shading

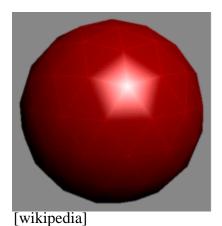
- Per-vertex normal
 - Can be computed from adjacent triangle normals (e.g. by averaging)
- Linear interpolation of the shaded colors
 - Computed at all vertices and interpolated
- Often results in shading artifacts along edges
 - Mach Banding (i.e. discontinuous 1st derivative)
 - Flickering of highlights (when one of the normal generates strong reflection)

$$L_x \sim f_r(\omega_o, n_x, \omega_i) L_i \cos \theta_i$$

$$L_p = \lambda_1 L_a + \lambda_2 L_b + \lambda_3 L_c$$

Barycentric interpolation within triangle





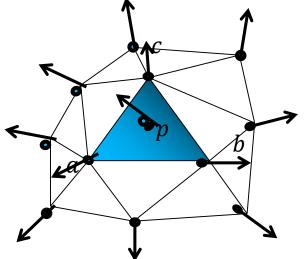
Surface Normals – Triangle Mesh

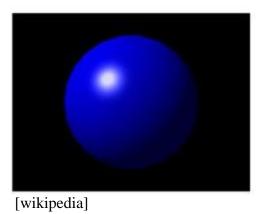
Shading Model: Phong Shading

- Linear interpolation of the surface normal
- Shading is evaluated at every point separately
- Smoother but still off due to hit point offset from apparent surface

$$n_{p} = \frac{\lambda_{1}n_{1} + \lambda_{2}n_{2} + \lambda_{3}n_{3}}{\|\lambda_{1}n_{1} + \lambda_{2}n_{2} + \lambda_{3}n_{3}\|}$$
$$L_{p} \sim f_{r}(\omega_{o}, n_{p}, \omega_{i})L_{i}\cos\theta_{i}$$

 Barycentric interpolation within triangle

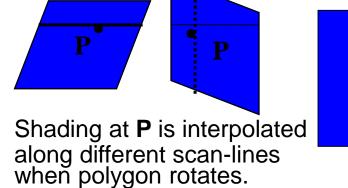


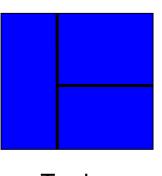


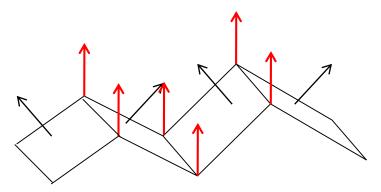
Problems in Interpolated Shading

Issues

- Polygonal silhouette may not match the smooth shading
- Perspective distortion
 - Interpolation in 2-D screen space rather than world space (==> later)
- Orientation dependence
 - Only for polygons
 - Not with triangles (here linear interpolation is rotation-invariant)
- Shading discontinuities at shared vertices (T-edges)
- Unrepresentative normal vectors



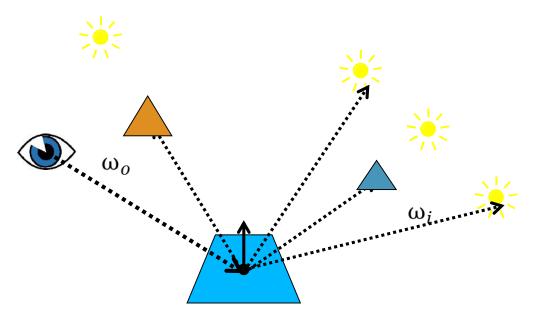




Vertex normals are all parallel

Occlusions

- The point on the surface might be in shadow
 - Rasterization (OpenGL):
 - Not easily done
 - Can use shadow map or shadow volumes (→ later)
 - Ray tracing
 - Simply trace ray to light source and test for occlusion



Area Light sources

Typically approximated by sampling

- Replacing it with some point light sources
 - Often randomly sampled
 - Cosine distribution of power over angular directions

