
Philipp Slusallek

Pascal Grittmann

Computer Graphics

- Texturing -

Overview
• Last time

– Shading

– BRDFs

• Today
– Texture definition

– Image textures

– Procedural textures

– Texture mapping

• Next lecture
– Alias & signal processing

2

Texture
• Textures modify the input

for shading computations
– Either via (painted) images

textures or procedural functions

• Example texture maps for
– Reflectance, normals, shadow

reflections, …

3

Definition: Textures
• Texture maps texture coordinates to shading values

– Input: 1D/2D/3D texture coordinates

• Explicitly given or derived via other data (e.g. position, direction, …)

– Output: Scalar or vector value

• Modified values in shading computations
– Reflectance

• Changes the diffuse or specular reflection coefficient (𝑘𝑑, 𝑘𝑠)

– Geometry and Normal (important for lighting)

• Displacement mapping 𝑃′ = 𝑃 + Δ𝑃

• Normal mapping 𝑁′ = 𝑁 + Δ𝑁

• Bump mapping 𝑁′ = 𝑁(𝑃 + 𝑡𝑁)

– Opacity

• Modulating transparency (e.g. for fences in games)

– Illumination

• Light maps, environment mapping, reflection mapping

IMAGE TEXTURES

5

Reconstruction Filter
• Image texture

– Discrete set of sample values (given at texel centers!)

• In general
– Hit point does not exactly hit a texture sample

• Still want to reconstruct a continuous function
– Use reconstruction filter to find color for hit point

6

Texture Space

Nearest Neighbor
• Local Coordinates

– Assuming cell-centered samples

– u = tu * resU;

– v = tv * resV;

• Lattice Coordinates
– lu = min(u , resU – 1);

– lv = min(v , resV – 1);

• Texture Value
– return image[lu, lv];

lu, lv lu+1, lv

lu, lv+1 lu+1, lv+1

u

v

Bilinear Interpolation
• Local Coordinates

– Assuming node-centered samples

– u = tu * (resU – 1);

– v = tv * (resV – 1);

• Fractional Coordinates
– fu = u - u ;

– fv = v - v ;

• Texture Value
– return (1-fu) (1-fv) image[u , v]

+ (1-fu) (fv) image[u , v+1]

+ (fu) (1-fv) image[u+1, v]

+ (fu) (fv) image[u+1, v+1]

Bilinear Interpolation
• Successive Linear Interpolations

– u0 = (1-fv) image[u , v]

+ (fv) image[u , v+1];

– u1= (1-fv) image[u+1, v]

+ (fv) image[u+1, v+1];

– return (1-fu) u0

+ (fu) u1;

u

v

t

lu, lv+1 lu+1, lv+1

lu, lv lu+1, lv
fu 1-fu

1-fv

fv

Nearest vs. Bilinear Interpolation

Bicubic Interpolation
• Properties

– Assuming node-centered samples

– Essentially based on cubic splines (see later)

• Pros
– Even smoother

• Cons
– More complex & expensive (4x4 kernel)

– Overshoot

Wrap Mode
• Texture Coordinates

– (u, v) in [0, 1] x [0, 1]

• What if?
– (u, v) not in unit square?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

0, 0

4, 4

4, 0

0, 4 v

u

Wrap Mode
• Repeat

• Fractional Coordinates
– 𝑡𝑢 = 𝑢 − 𝑢

– 𝑡𝑣 = 𝑣 − 𝑣

0, 0

4, 4

4, 0

0, 4 v

u

Wrap Mode
• Mirror

• Fractional Coordinates
– 𝑡𝑢 = 𝑢 − 𝑢

– 𝑡𝑣 = 𝑣 − 𝑣

• Lattice Coordinates
– 𝑙𝑢 = 𝑢

– 𝑙𝑣 = 𝑣

• Mirror if Odd
– if (l_u % 2 == 1)

t_u = 1 - t_u

– if (l_v % 2 == 1)
t_v = 1 - t_v

0, 0

4, 4

4, 0

0, 4 v

u

Wrap Mode
• Clamp

• Clamp u to [0, 1]
if (u < 0) tu = 0;

else if (u > 1) tu = 1;

else tu = u;

• Clamp v to [0, 1]
if (v < 0) tv = 0;

else if (v > 1) tv = 1;

else tv = v;

0, 0

4, 4

4, 0

0, 4 v

u

Wrap Mode
• Border

• Check Bounds
if (u < 0 || u > 1

|| v < 0 || v > 1)

return backgroundColor;

else

tu = u;

tv = v;

0, 0

4, 4

4, 0

0, 4 v

u

Wrap Mode
• Comparison

– With OpenGL texture modes

Discussion: Image Textures
• Pros

– Simple generation

• Painted, simulation, ...

– Simple acquisition

• Photos, videos

• Cons
– Illumination “frozen” during acquisition

– Limited resolution

– Susceptible to aliasing

– High memory requirements (often HUGE for films, 100s of GB)

– Issues when mapping 2D image onto 3D object

PROCEDURAL TEXTURES

19

Discussion: Procedural Textures
• Cons

– Sometimes hard to achieve specific effect

– Possibly non-trivial programming

• Pros
– Flexibility & parametric control

– Unlimited resolution

– Anti-aliasing possible

– Low memory requirements

– May be directly defined as 3D “image” mapped to 3D geometry

– Low-cost visual complexity

2D Checkerboard Function
• Lattice Coordinates

– lu = u

– lv = v

• Compute Parity
– parity = (lu + lv) % 2;

• Return Color
– if (parity == 1)

• return color1;

– else

• return color0;

3D Checkerboard - Solid Texture
• Lattice Coordinates

– lu = u

– lv = v

– lw = w

• Compute Parity
– parity = (lu + lv + lw) % 2;

• Return Color
– if (parity == 1)

• return color1;

– else

• return color0;

Tile
• Fractional Coordinates

– fu = u - u

– fv = v - v

• Compute Booleans
– bu = fu < mortarWidth;

– bv = fv < mortarWidth;

• Return Color
– if (bu || bv)

• return mortarColor;

– else

• return tileColor;

mortarWidth

Brick
• Shift Column for Odd Rows

– parity = v % 2;

– u -= parity * 0.5;

• Fractional Coordinates
– fu = u - u

– fv = v - v

• Compute Booleans
– bu = fu < mortarWidth;

– bv = fv < mortarWidth;

• Return Color
– if (bu || bv)

• return mortarColor;

– else

• return brickColor;

More Variation

25

Other Patterns
• Circular Tiles

• Octagonal Tiles

• Use your imagination!

Perlin Noise
• Natural Patterns

– Similarity between patches at different locations

• Repetitiveness, coherence (e.g. skin of a tiger or zebra)

– Similarity on different resolution scales

• Self-similarity

– But never completely identical

• Additional disturbances, turbulence, noise

• Mimic Statistical Properties
– Purely empirical approach

– Looks convincing, but has nothing to do with material’s physics

• Perlin Noise is essential for adding “natural” details
– Used in many texture functions

Perlin Noise
• Natural Fractals

Noise Function
• Noise(x, y, z)

– Statistical invariance under rotation

– Statistical invariance under translation

– Roughly fixed frequency of ~1 Hz

• Integer Lattice (i, j, k)
– Value noise

• Random value at lattice points

– Gradient noise

• Random gradient vector at lattice point

– Interpolation

• Bi-/tri-linear or cubic (Hermite spline, later)

– Hash function to map vertices to values

• Randomized look up

• Virtually infinite extent and variation
with finite array of values

p

Noise vs. Noise
• Value Noise vs. Gradient Noise

– Gradient noise has lower regularity artifacts

– More high frequencies in noise spectrum

• Random Values vs. Perlin Noise
– Stochastic vs. deterministic

Random values
at each pixel

Gradient noise

Turbulence Function
• Noise Function

– Single spike in frequency spectrum (single frequency, see later)

• Natural Textures
– Mix of different frequencies
– Decreasing amplitude for high frequencies

• Turbulence from Noise
– 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 𝑥 = σ𝑖=0

𝑘 |𝑎𝑖 ∗ 𝑛𝑜𝑖𝑠𝑒 𝑓𝑖 𝑥 |
• Frequency: 𝑓𝑖 = 2𝑖

• Amplitude: 𝑎𝑖 = 1 / 𝑝𝑖

• Persistence: p typically p=2

• Power spectrum : 𝑎𝑖 = 1 / 𝑓𝑖
• Brownian motion: 𝑎𝑖 = 1 / 𝑓𝑖

2

– Summation truncation
• 1st term: noise(x)

• 2nd term: noise(2x)/2

• …

• Until period (1/𝑓𝑘) < 2 pixel-size (band limit, see later)

Synthesis of Turbulence (1-D)

Synthesis of Turbulence (2-D)

Example: Marble
• Overall Structure

– Smoothly alternating layers of different marble colors

– fmarble(x,y,z) := marble_color(sin(x))

– marble_color : transfer function (see lower left)

• Realistic Appearance
– Simulated turbulence

– fmarble(x,y,z) := marble_color(sin(x + turbulence(x, y, z)))

Solid Noise
• 3D Noise Texture

– Wood

– Erosion

– Marble

– Granite

– …

RenderMan Companion

Others Applications

• Bark
– Turbulated saw-tooth function

• Clouds
– White blobs

– Turbulated transparency along edge

• Animation
– Vary procedural texture function’s parameters over time

TEXTURE MAPPING

38

2D Texture Mapping

• Forward mapping
– Object surface parameterization
– Projective transformation

• Inverse mapping
– Find corresponding pre-image/footprint of each pixel in texture
– Integrate over pre-image

39

Surface Parameterization
• To apply textures we need 2D coordinates on

surfaces

→ Parameterization

• Some objects have a natural parameterization
– Sphere: spherical coordinates (φ, θ) = (2π u, π v)

– Cylinder: cylindrical coordinates (φ, h) = (2 π u, H v)

– Parametric surfaces (such as B-spline or Bezier surfaces → later)

• Parameterization is less obvious for
– Polygons, implicit surfaces, teapots, …

40

Triangle Parameterization
• Triangle is a planar object

– Has implicit parameterization (e.g. barycentric coordinates)
– But we need more control: Placement of triangle in texture space

• Assign texture coordinates (u,v) to each vertex (xo,yo,zo)

• Apply viewing projection (xo,yo,zo) → (x,y) (details later)

• Yields full texture transformation (warping) (u,v) → (x,y)

– In homogeneous coordinates (by embedding (u,v) as (u,v,1))

– Transformation coefficients determined by 3 pairs (u,v)→(x,y)

• Three linear equations

• Invertible iff neither set of points is collinear

41

𝑥 =
𝑎𝑢 + 𝑏𝑣 + 𝑐

𝑔𝑢 + ℎ𝑣 + 𝑖
𝑦 =

𝑑𝑢 + 𝑒𝑣 + 𝑓

𝑔𝑢 + ℎ𝑣 + 𝑖

𝑥′
𝑦′
𝑤

=
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑢′
𝑣′
𝑞

; 𝑥, 𝑦 =
𝑥′

𝑤
,
𝑦′

𝑤
, 𝑢, 𝑣 =

𝑢′

𝑞
,
𝑣′

𝑞

Triangle Parameterization (2)
• Given

• The inverse transform (x,y)→(u,v) is

• Coefficients must be calculated for each triangle
– Rasterization

• Incremental bilinear update of (u’,v’,q) in screen space

• Using the partial derivatives of the linear function (i.e. constants)

– Ray tracing
• Evaluated at every intersection (via barycentric coordinates)

• Often (partial) derivatives are needed as well
– Explicitly given in matrix (colored for Τ𝜕𝑢 𝜕𝑥, Τ𝜕𝑣 𝜕𝑥, Τ𝜕𝑞 𝜕𝑥)

42

𝑥′
𝑦′
𝑤

=
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑢′
𝑣′
𝑞

𝑢′
𝑣′
𝑞

=

𝑒𝑖 − 𝑓ℎ 𝑐ℎ − 𝑏𝑖 𝑏𝑓 − 𝑐𝑒
𝑓𝑔 − 𝑑𝑖 𝑎𝑖 − 𝑐𝑔 𝑐𝑑 − 𝑎𝑓
𝑑ℎ − 𝑒𝑔 𝑏𝑔 − 𝑎ℎ 𝑎𝑒 − 𝑏𝑑

𝑥′
𝑦′
𝑤

Textures Coordinates
• Solid Textures

– 3D world/object (x,y,z) coords → 3D (u,v,w) texture coordinates

– Similar to carving object out of material block

• 2D Textures
– 3D Cartesian (x,y,z) coordinates → 2D (u,v) texture coordinates?

David Ebert

Parametric Surfaces
• Definition (more detail later)

– Surface defined by parametric function

• (x, y, z) = p(u, v)

– Input

• Parametric coordinates: (u, v)

– Output

• Cartsesian coordinates: (x, y, z)

• Texture Coordinates
– Directly derived from surface parameterization

– Invert parametric function

• From world coordinates to parametric coordinates

• Usually computed implicitly anyway (e.g. in ray tracing)

Parametric Surfaces
• Polar Coordinates

– (x, y, 0) = Polar2Cartesian(r, φ)

• Disc
– p(u, v) = Polar2Cartesian(R v, 2 π u) // disc radius R

Parametric Surfaces
• Cylindrical Coordinates

– (x, y, z) = Cylindrical2Cartesian(r, φ, z)

• Cylinder
– p(u, v) = Cylindrical2Cartesian(r, 2 π u, H v) // cylinder height H

Parametric Surfaces
• Spherical Coordinates

– (x, y, z) = Spherical2Cartesian(r, θ, φ)

• Sphere
– p(u, v) = Spherical2Cartesian(r, π v, 2 π u)

Parametric Surfaces
• Triangle

– Use barycentric coordinates directly

– 𝑝 𝑢, 𝑣 = 1 − 𝑢 − 𝑣 𝑝0 + 𝑢𝑝1 + 𝑣 𝑝2

0,1

0,0 1,0

p2

p1

u

v

0,1

0,0 1,0u

v

Parametric Surfaces
• Triangle Mesh

– Associate a predefined texture coordinate to each triangle vertex

• Interpolate texture coordinates using barycentric coordinates

• 𝑢 = 𝜆0𝑝0𝑢 + 𝜆1𝑝1𝑢 + 𝜆2𝑝2𝑢
• 𝑣 = 𝜆0𝑝0𝑣 + 𝜆1𝑝1𝑣 + 𝜆2𝑝2𝑣

– Texture mapped onto manifold

• Single texture shared by many triangles

Surface Parameterization
• Other Surfaces

– No intrinsic parameterization??

Intermediate Mapping
• Coordinate System Transform

– Express Cartesian coordinates into a given coordinate system

• 3D to 2D Projection
– Drop one coordinate

– Compute u and v from remaining 2 coordinates

Intermediate Mapping
• Planar Mapping

– Map to different Cartesian coordinate system

– (x’, y’, z’) = AffineTransformation(x, y, z)

• Orthogonal basis: translation + row-vector rotation matrix

• Non-orthogonal basis: translation + inverse column-vector matrix

– Drop z’, map u = x’, map v = y’

– E.g.: Issues when surface normal orthogonal to projection axis

x

y

z

x’

z’

y’

Intermediate Mapping
• Cylindrical Mapping

– Map to cylindrical coordinates (possibly after translation/rotation)

– (r, φ, z) = Cartesian2Cylindrical(x, y, z)

– Drop r, map u = φ / 2 π, map v = z / H

– Extension: add scaling factors: u = α φ / 2 π

– E.g.: Similar topology gives reasonable mapping

x

y

z

x’

z’

y’

Intermediate Mapping
• Spherical Mapping

– Map to spherical coordinates (possibly after translation/rotation)

– (r, θ, φ) = Cartesian2Spherical(x, y, z)

– Drop r, map u = φ / 2 π, map v = θ / π

– Extension: add scaling factors to both u and v

– E.g.: Issues in concave regions

x

y

z

x’

z’

y’

Two-Stage Mapping: Problems
• Problems

– May introduce undesired texture distortions if the intermediate
surface differs too much from the destination surface

– Still often used in practice because of its simplicity

55

Projective Textures
• Project texture onto

object surfaces
– Slide projector

• Parallel or perspective
projection

• Use photographs (or
drawings) as textures
– Used a lot in film industry!

• Multiple images
– View-dependent texturing

(advanced topic)

• Perspective Mapping
– Re-project photo on its

3D environment

56

Projective Texturing: Examples

57

Slope-Based Mapping
• Definition

– Depends on surface normal and predefined vector

• Example
– α = n ω

– return α flatColor + (1 - α) slopeColor;

Environment Map
• Spherical Map

– Photo of a reflective sphere (gazing ball)

– Photos with a fish-eye camera

• Only gives hemi-sphere mapping

Environment Map
• Latitude-Longitude Map

– Remapping 2 images of reflective sphere

– Photo with an environment camera

• Algorithm
– If no intersection found, use ray direction to find background color

– Cartesian coords of ray dir. → spherical coords → uv tex coords

Environment Map
• Cube Map

– Remapping 2 images of reflective sphere

– Photos with a perspective camera

• Algorithm
– Find main axis (-x, +x, -y, +y, -z, +z) of ray direction

– Use other 2 coordinates to access corresponding face texture

• Akin to a 90° projective light

Reflection Map Rendering
• Spherical parameterization

• O-mapping using reflected view ray intersection

62

Reflection Map Parameterization
• Spherical mapping

– Single image

– Bad utilization of the image area

– Bad scanning on the edge

– Artifacts, if map and image do not
have the same view point

• Double parabolic mapping
– Yields spherical parameterization

– Subdivide in 2 images (front-facing and back-facing sides)

– Less bias near the periphery

– Arbitrarily reusable

– Supported by OpenGL extensions

63

Reflection Mapping Example

64

Terminator II motion picture

Reflection Mapping Example II
• Reflection mapping with Phong reflection

– Two maps: diffuse & specular

– Diffuse: index by surface normal

– Specular: indexed by reflected view vector

65

RenderMan

Companion

Light Maps
• Light maps (e.g. in Quake)

– Pre-calculated illumination (local irradiance)

• Often very low resolution: smoothly varying

– Multiplication of irradiance with base texture

• Diffuse reflectance only

– Provides surface radiosity

• View-independent out-going radiance

– Animated light maps

• Animated shadows, moving light spots, etc…

66

Reflectance Irradiance Radiosity
Representing radiosity
in a mesh or texture

mesh

texture

𝐵 𝑥 = 𝜌 𝑥 𝐸(𝑥) = 𝜋𝐿𝑜 𝑥

• Modulation of the normal vector
– Surface normals changed only

• Influences shading only

• No self-shadowing, contour is not altered

Bump Mapping

67

Bump Mapping
• Original surface: O(u,v)

– Surface normals are known

• Bump map: B(u,v) ϵ R
– Surface is offset in normal direction

according to bump map intensity

– New normal directions N’(u,v) are
calculated based on virtually displaced
surface O’(u,v)

– Original surface is rendered with new
normals N’(u,v)

68

Grey-valued texture used for bump height

Bump Mapping

– Normal is cross-product of derivatives:

– If B is small (i.e. the bump map
displacement function is small
compared to its spatial extent) the last
term in each equation can be ignored

– The first term is the normal to the
surface and the last is zero, giving:

69

𝑂′ 𝑢, 𝑣 = 𝑂 𝑢, 𝑣 + 𝐵 𝑢, 𝑣
𝑁

|𝑁|

𝑂𝑢
′ = 𝑂𝑢 + 𝐵𝑢

𝑁

|𝑁|
+ 𝐵

𝑁

𝑁
𝑢

𝑂𝑣
′ = 𝑂𝑣 + 𝐵𝑣

𝑁

|𝑁|
+ 𝐵

𝑁

𝑁
𝑣

𝑁′ 𝑢, 𝑣

= 𝑂𝑢 × 𝑂𝑣 + 𝐵𝑢
𝑁

|𝑁|
× 𝑂𝑣

+ 𝐵𝑣 𝑂𝑢 ×
𝑁

𝑁
+ 𝐵𝑢𝐵𝑣

𝑁 × 𝑁

𝑁 2

𝐷 = 𝐵𝑢 𝑁 × 𝑂𝑣 − 𝐵𝑣 𝑁 × 𝑂𝑢
𝑁′ = 𝑁 + 𝐷

Texture Examples
• Complex optical effects

– Combination of multiple texture effects

70

RenderMan Companion

Billboards
• Single textured polygons

– Often with opacity texture

– Rotates, always facing viewer

– Used for rendering distant objects

– Best results if approximately
radially or spherically symmetric

• Multiple textured polygons
– Azimuthal orientation: different view-points

– Complex distribution: trunk, branches, …

71

