Computer Graphics

Spectral Analysis

Philipp Slusallek

Spatial Frequency

- Frequency
- Inverse of period length of some structure in an image
- Unit [1/pixel]
- Lowest frequency
- Image average
- Highest representable frequency
- Nyquist frequency ($1 / 2$ the sampling frequency)
- Defined by half the image resolution
- Phase allows shifting of the pattern

Fourier Transformation

- Any continuous function $f(x)$ can be expressed as an integral over sine and cosine waves:
Analysis: $\quad F(k)=F_{x}[f(x)](k)=\int_{-\infty}^{\infty} f(x) e^{-i 2 \pi k x} d x$
Synthesis: $f(x)=F_{x}^{-1}[F(k)](x)=\int_{-\infty} F(k) e^{i 2 \pi k x} d k$
- Representation via complex exponential
- $e^{i x}=\cos (x)+i \sin (x)$ (see Taylor expansion)
- Division into even and odd parts
- Even: $f(x)=f(-x)$ (symmetry about y axis)
- Odd: $f(x)=-f(-x)$ (symmetry about origin)

$$
f(x)=\frac{1}{2}[f(x)+f(-x)]+\frac{1}{2}[f(x)-f(-x)]=E(x)+O(x)
$$

- Transform of each part
- Even: cosine only; odd: sine only

Analysis \& Synthesis

Symetric integral ([-a, a]) over an odd function is zero

- Analysis

$$
F(k)=\int_{-\infty}^{\infty} f(x)(\cos (-2 \pi k x)+i \sin (-2 \pi k x)) d x=b(k)+i a(k)
$$

- Even term

$$
\begin{aligned}
& b(k)=\int_{-\infty}^{\infty} f(x) \cos (2 \pi k x) d x=\int_{-\infty}^{\infty}(E(x)+O(x)) \cos (2 \pi k x) d x=\int_{-\infty}^{\infty} E(x) \cos (2 \pi k x) d x \\
& a(k)=\int_{-\infty}^{\infty} f(x) \sin (2 \pi k x) d x=\int_{-\infty}^{\infty}(E(x)+O(x)) \sin (2 \pi k x) d x=\int_{-\infty}^{\infty} O(x) \sin (2 \pi k x) d x
\end{aligned}
$$

- Synthesis

$$
f(x)=\int_{-\infty}^{\infty} F(k)(\cos (2 \pi k x)+i \sin (2 \pi k x)) d k=E(x)+O(x)
$$

$$
E(x)=\int_{-\infty}^{\infty} F(k) \cos (2 \pi k x) d k=\int_{-\infty}^{\infty}(b(k)-i a(k)) \cos (2 \pi k x) d k=\int_{-\infty}^{\infty} b(k) \cos (2 \pi k x) d k
$$

$$
O(x)=\int_{-\infty}^{\infty} F(k) i \sin (2 \pi k x) d k=\int_{-\infty}^{\infty}(b(k)-i a(k)) i \sin (2 \pi k x) d k=\int_{-\infty}^{\infty} a(k) \sin (2 \pi k x) d k
$$

Spatial vs. Frequency Domain

- Important basis functions:
- Box \leftrightarrow (normalized) sinc

$$
\begin{gathered}
\operatorname{sinc}(x)=\frac{\sin (x \pi)}{x \pi} \\
\operatorname{sinc}(0)=1 \\
\int \operatorname{sinc}(x) d x=1
\end{gathered}
$$

- Negative values
- Infinite support
- Tent $\leftrightarrow \operatorname{sinc}^{2}$
- Tent == Convolution of box function with itself
- Gaussian \leftrightarrow Gaussian
- Inverse width

Spatial vs. Frequency Domain

- Transform behavior
- Example: Fourier transform of a box function

$$
\operatorname{rect}(a t) \quad \circ-\frac{1}{|a|} \operatorname{si}\left(\frac{\omega}{2 a}\right) .
$$

- Wide box \rightarrow narrow sinc
- Box \rightarrow sinc
- Narrow box \rightarrow wide sinc

Fourier Transformation

- Periodic in space \Leftrightarrow discrete in frequency (vice ver.)
- Any periodic, continuous function can be expressed as the sum of an (infinite) number of sine or cosine waves:

$$
f(x)=\Sigma_{k} a_{k} \sin \left(2 \pi^{*} k^{*} x\right)+b_{k} \cos \left(2 \pi^{*} k^{*} x\right)
$$

- Any finite interval can be made periodic by concatenating with itself
- Decomposition of signal into different frequency bands: Spectral Analysis
- Frequency band: k
- $k=0 \quad$: mean value
- $k=1$: function period, lowest possible frequency
- $k=1.5$? : not possible, periodic function, e.g. $f(x)=f(x+1)$
- $k_{\max }$? : band limit, no higher frequency present in signal
- Fourier coefficients: a_{k}, b_{k} (real-valued, as before)
- Even function $f(x)=f(-x): a_{k}=0$
- Odd function $f(x)=-f(-x): b_{k}=0$

Fourier Synthesis Example

－Square wave：periodic，uneven function

$$
\begin{gathered}
f(x)=0.5 \quad \forall 0<(x \bmod 2 \pi)<\pi \\
=-0.5 \quad \forall \pi<(x \bmod 2 \pi)<2 \pi \\
a_{k}=\int \sin (2 \pi k x) f(x) d x \quad f(x)=\sum_{k} a_{k} \sin (2 \pi k x)
\end{gathered}
$$

```
- \(a_{0}=0\)
- \(a_{1}=1\)
- \(a_{2}=0\)
- \(a_{3}=1 / 3\)
```



```
\(\cdot a_{2}=0\)
\[
\frac{\sin (3 x)}{3}
\]
\(\cdot a_{4}=0\)
- \(a_{5}=1 / 5\)
－\(a_{3}=1 / 3\)
```

```
\[
M M M M M
\]
\[
\cdot a_{4}=0
\]
\[
\cdot a_{5}=1 / 5
\]
\[
\cdot a_{6}=0
\]
```



```
\[
\cdot a_{7}=1 / 7
\]
\[
\begin{aligned}
& \frac{\sin (5 x\}}{5} \\
& \frac{\sin (7 x)}{7}
\end{aligned}
\]
\[
\text { maniminunanuan }=M W M W M W
\]
```

```
\[
=m p m m a n m u t
\]
\[
\cdot a_{8}=0
\]
\[
\cdot a_{9}=1 / 9
\]
\[
\bullet \ldots
\]
```


Discrete Fourier Transform

- Equally-spaced function samples (N samples)
- Function values known only at discrete points, e.g.
- Idealized physical measurements
- Pixel positions in an image!
- Represented via sum of Delta distribution (Fourier integrals \rightarrow sums)
- Fourier analysis

$$
\begin{aligned}
& a_{k}=\sum_{i} \sin \left(\frac{2 \pi k i}{N}\right) f_{i} \\
& b_{k}=\sum_{i} \cos \left(\frac{2 \pi k i}{N}\right) f_{i}
\end{aligned}
$$

- Sum over all N measurement points
$-k=0,1,2, \ldots$? Highest possible frequency?
- Nyquist frequency: highest frequency that can be represented
- Defined as $1 / 2$ the sampling frequency
- Sampling rate N : determined by image resolution (pixel size)
- 2 samples / period $\leftrightarrow 0.5$ cycles per pixel $\Rightarrow k_{\max } \leq N / 2$

Spatial vs. Frequency Domain

- Examples (pixels vs. cycles per pixel)
- Sine wave with positive offset

(a)

(b)
- Scanline of an image

2D Fourier Transform

- 2 separate 1D Fourier transformations along x and y directions
- Discontinuities: orthogonal direction in Fourier domain!

Convolution

$$
(f \otimes g)(x)=\int_{-\infty}^{\infty} f(\tau) g(x-\tau) d \tau
$$

- Two functions $\boldsymbol{f}, \boldsymbol{g}$

- Shift one (reversed) function against the other by x
- Multiply function values
- Integrate across overlapping region
- Numerical convolution: expensive operation
- For each x : integrate over non-zero domain

Convolution

- Examples

Convolution Theorem

- Convolution in image domain
\rightarrow Multiplication in Fourier domain
- Convolution in Fourier domain
\rightarrow Multiplication in image domain
- Multiplication in transformed Fourier domain may be cheaper than direct convolution in image domain!

$\begin{array}{cc}\operatorname{rect}(t) & * \operatorname{rect}(t) \\ 0 & =x(t) \\ i & i\end{array}$
$\operatorname{si}\left(\frac{\omega}{2}\right) \cdot \operatorname{si}\left(\frac{\omega}{2}\right)=X(j \omega)=\operatorname{si}^{2}\left(\frac{\omega}{2}\right)$.

Convolution and Filtering

- Technical realization
- In image domain
- Pixel mask with weights
- Problems (e.g. sinc)
- Large filter support
- Large mask
- A lot of computation
- Negative weights
- Negative light?

Filtering

- Low-pass filtering
- Multiplication with box in frequency domain
- Convolution with sinc in spatial domain
- High-pass filtering
- Multiplication with (1-box) in frequency domain
- Only high frequencies
- Band-pass filtering
- Only intermediate

Low-Pass Filtering

- "Blurring"

High-Pass Filtering

- Enhances discontinuities in image
- Useful for edge detection

