Computer Graphics

- Distribution Ray Tracing -

Arsène Pérard-Gayot

Problems

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

Anti-aliasing

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

Motion blur

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

BRDF

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

$$L_o = L_e + \int_{\Omega_+} f_r L_i \cos \theta_i \, d\omega_i$$

Area Lights

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

$$E_i = \int_A V(x, y) \frac{\cos \theta_A}{\|x - y\|^2} dA$$

Sampling

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

STOCHASTIC SAMPLING

Random Number

Random Number

- Uniformly distributed
- ξ in [0, 1)
- D=1

Pseudo-Random Number

- Linear congruential
- Mersenne-Twister
- ...
- Speed / evenness trade-off

Parallelogram Sampling

- Parametric Form
 - $p(u,v) = (1 u v)p_0 + up_1 + v p_2$
- Random Sampling
 - $p(\xi_1, \xi_2)$

Triangle Sampling

- Parametric Form
 - $p(u,v) = (1 u v)p_0 + up_1 + v p_2$
- Random Sampling

$$\begin{array}{l} - \mbox{ if } \xi_1 + \xi_2 < 1 : p(\xi_1, \xi_2) \\ - \mbox{ if } \xi_1 + \xi_2 > 1 : p(1 - \xi_1, 1 - \xi_2) \end{array}$$

Disc Sampling

Parametric Form

- $p_{\circ}(u, v) = Polar_to_Cartesian(Rv, 2\pi u)$
- Naïve Sampling
 - $p_{\circ}(\xi_1,\xi_2)$

Disc Sampling

Parametric Form

- $p_{\circ}(u, v) = Polar_to_Cartesian(Rv, 2\pi u)$
- Random Sampling
 - $p_{\circ}(\xi_1, \sqrt{\xi_2})$

DISTRIBUTION RAY-TRACING

Anti-Aliasing

- Artifacts
 - Jagged edges

– Aliased patterns

Anti-Aliasing

- Approach
 - Average samples over pixel area
 - Sample offset in the pixel area

 $(x+0.5,y+0.5) \to (x+\xi_1,y+\xi_2)$

Anti-Aliasing

Basic Method

- Plain average
- Box filter f(x, y) = 1

$$-L = \frac{\sum_{i=1}^{n} L(\xi_{i1}, \xi_{i2})}{n}$$

Filtering

- Weighted average
- Filter f(x, y)

$$- L = \frac{\sum_{i=1}^{n} f(\xi_{i1}, \xi_{i2}) L(\xi_{i1}, \xi_{i2})}{\sum_{i=1}^{n} f(\xi_{i1}, \xi_{i2})}$$

Specified by

- Pinhole camera parameters
- Radius of circle of confusion
- Focal length matters more

Specified by

- Pinhole camera parameters
- Radius of circle of confusion r
- Focal length matters more

$$\vec{d} = \vec{f} + p_x \vec{s_x} + p_y \vec{s_y}$$
$$\vec{h} = o + \vec{d}$$

$$(\zeta_1, \zeta_2) = p_{\circ}(\xi_1, \sqrt{\xi_2})$$

$$o' = o + \zeta_1 r \frac{\overrightarrow{s_{\chi}}}{|\overrightarrow{s_{\chi}}|} + \zeta_2 r \frac{\overrightarrow{s_{y}}}{|\overrightarrow{s_{y}}|}$$

$$\overrightarrow{d'} = h - o'$$

• Very Small Aperture

Small Aperture

• Large Aperture

• Very Large Aperture

Motion Blur

Real Camera

- Finite exposure time
- Shutter opening at t₀
- Shutter closing at t₁

Motion Blur

smooth results Indexing structures?

Reflections/Refractions

Dielectric Materials

- $-\eta_i$ refractive index $\frac{c}{n}$
- Light: fastest path
- Snell's law:

$$\frac{\sin\theta_1}{\sin\theta_2} = \frac{\eta_2}{\eta_1}$$

— if

$$\sin\theta_2 = \frac{\eta_1}{\eta_2}\sin\theta_1 > 1$$

... then total inner reflection

Reflections/Refractions

- Which ray to trace?
 - Both: may be exponential

Reflections/Refractions

• Which ray to trace?

- Pick one at random:
 - $\xi < 0.5 reflection$
 - $\xi \ge 0.5 \text{refraction}$
- Compensate the result

•
$$L_o = 2 \cdot L_i \cdot f_r$$

Fuzzy Reflections/Refractions

Real Materials

Never perfectly smooth surfaces

Approach

- Empirical approximation of non-ideal mirrors and glass (see RIS)
- Sample direction in blur disc

Fuzzy Reflections/Refractions

- Gotchas
 - Perturbed ray may flip side
 - Check sign of dot product with N
 - Ignore rays on wrong side

Inter-Reflections/Refractions

- Recursively repeat process
- At surfaces with corresponding materials

Fuzzy Reflections/Refractions

Area Light Sources

Real Light Sources

- Finite area

Area Light Sources

- Approach
 - Random sample point on surface of light source
 - Scale intensity by area and cosine

Soft Shadows

• Small vs. Large Area Light

Slides courtesy of Piotr Danilewski 37