
Computer Graphics

- Splines -

Philipp Slusallek

2

Curves
• Curve descriptions

– Explicit functions
• y(x)= ± sqrt(r2 - x2), restricted domain (x  [-1, 1])

– Implicit functions
• x2 + y2 = r2 unknown solution set

– Parametric functions
• x(t)= r cos(t), y(t)= r sin(t), t  [0, 2]
• Flexibility and ease of use

• Typically, use of polynomials
– Avoids complicated functions (z.B. pow, exp, sin, sqrt)
– Use simple polynomials, typically of low degree

3

Parametric curves
• Separate function in each coordinate

– 3D: f(t)= (x(t), y(t), z(t))

4

Monomials
• Monomial basis

– Simple basis: 1, t, t2, ... (t usually in [0 .. 1])

• Polynomial representation

– Coefficients can be determined from a sufficient number of
constraints (e.g. interpolation of given points)

• Given (n+1) parameter values ti and points Pi

• Solution of a linear system in the Ai − possible, but inconvenient

• Matrix representation

  



n

i
i

i AttztytxtP
0

)()()()(
Monomials

Degree (= Order – 1)

Coefficients R3

   
























0,0,0,

1,1,1,

,,´,

1 1)()()()()(

zyx

nznynx

nznynx

nn

AAA

AAA

AAA

tttTtztytxtP


A

5

Derivatives
• Derivative = tangent vector

– Polynomial of degree (n-1)

• Continuity and smoothness between
parametric curves
– C0 = G0 = same point
– Parametric continuity C1

• Tangent vectors are identical
– Geometric continuity G1

• Same direction of tangent vectors
– Similar for higher order derivatives

P ´ (t)=(x ´ (t) y ´ (t) z ´ (t))=T ´ (t) A =[nt n−1 (n-1) t n- 2
⋯ 1 0] [

Ax , n A´ y , n A z , n

Ax , n−1 Ay , n−1 Az , n−1

⋮

Ax ,0 Ay ,0 A z ,0
]

More on Continuity
• At one point:

• Geometric Continuity:
– G0: curves are joined together at that point
– G1: first derivatives are proportional at joint point

• Same direction but not necessarily same length
– G2: first and second derivatives are proportional

• Parametric Continuity:
– C0: curves are joined
– C1: first derivative equal
– C2: first and second derivatives are equal.

• If t is the time, this implies the acceleration is continuous.
– Cn: all derivatives up to and including the nth are equal.

7

Linear Interpolation
• Hat Functions and Linear Splines (C0/G0 continuity)

2 3 41

0 1-1

1

)(Ty)(Ty)(TP P(t) 3322 tttii )()(

1

10

01

1

0

1

1

0

(t)

itTtT

t

t

t

t

t

t
T

i 


























2 3 41

y2

y3 T(t)

8

Lagrange Interpolation
• Interpolating basis functions

– Lagrange polynomials for a set of parameter values T={t0, ..., tn}

• Properties
– Good for interpolation at given parameter values

• At each ti: One basis function = 1, all others = 0
– Polynomial of degree n (n factors linear in t)

• Infinitely continuous derivatives everywhere

• Lagrange Curves
– Use Lagrange Polynomials with point coefficients



 








 otherwise0

1
)(with ,)(

ji
tL

tt

tt
tL ijj

n
i

n

ji
oj ji

jn
i 





n

i
i

n
i PtLtP

0

)()(

9

Lagrange Interpolation
• Simple Linear Interpolation

– T={t0, t1}

• Simple Quadratic Interpolation
– T={t0, t1, t2}

01

01
1

10

11
0

)(

)(

tt

tt
tL

tt

tt
tL











t0 t1

1 L0
1 L1

1

20

2

10

12
0)(

tt

tt

tt

tt
tL










t0 t2

1

L0
1

L0
2t1

-1

10

Problems
• Problems with a single polynomial

– Degree depends on the number of interpolation constraints
– Strong overshooting for high degree (n > 7)
– Problems with smooth joints
– Numerically unstable
– No local changes

11

Splines
• Functions for interpolation & approximation

– Standard curve and surface primitives in 3D modeling & fonts
– Key frame and in-betweens in animations
– Filtering and reconstruction of images

• Historically
– Name for a tool in ship building

• Flexible metal strip that tries to stay straight
– Within computer graphics:

• Piecewise polynomial function
• Decouples continuity and degree of curve

Segment 1 Segment 2 Segment 3 Segment 4

What Continuity ?

12

Hermite Interpolation
• Hermite Basis (cubic)

– Interpolation of position P and tangent P´ information
for t= {0, 1}

– Very easy to piece together with G1/C1 continuity

– Basis functions

23
3

23
2

23
1

23
0

)23()(

)1()(

)1()(

)21()1()(

tttH

tttH

tttH

tttH









0 1 3
0H

3
3H

3
2H

3
1H

13

Hermite Interpolation
• Properties of Hermite Basis Functions

– H0 (H3) interpolates smoothly from 1 to 0 (1 to 0)
– H0 and H3 have zero derivative at t= 0 and t= 1

• No contribution to derivative (H1, H2)

– H1 and H2 are zero at t= 0 and t= 1
• No contribution to position (H0, H3)

– H1 (H2) has slope 1 at t= 0 (t= 1)
• Unit factor for specified derivative vector

• Hermite polynomials
– P0, P1 are positions R3

– P`0, P`1 are derivatives (tangent vectors) R3

)()(´)(´)()(3
31

3
21

3
10

3
00 tHPtHPtHPtHPtP 

3
0H

3
3H

3
2H

3
1H

14

Examples: Hermite Interpolation

G1 continuity

16

Matrix Representation

17

Matrix Representation
• For cubic Hermite interpolation we obtain:

• Solution:
– Two matrices must multiply to unit matrix

HH
T

HH
T

HH
T

HH
T

P

P

P

P

GM

GM

GM

GM

)0123(´

)0100(´

)1111(

)1000(

1

0

1

0









HHH

T

T

T

T

P

P

P

P

GMG















































0123

0100

1111

1000

1

0

1

0

or



















































0001

0100

1233

1122

0123

0100

1111

1000
1

HM

18

Bézier
• Bézier Basis [deCasteljau´59, Bézier´62]

– Different curve representation
– Start and end point
– 2 point that are approximated

by the curve (cubics)
– P´0= 3(b1-b0) and P´1= 3(b3-b2)

• Factor 3 due to derivative of t3

BHB

T

T

T

T

T

T

T

T

H GM

b

b

b

b

P

P

P

P

G 


































































3

2

1

0

1

0

1

0

3300

0033

1000

0001

´

´

19

Basis transformation
• Transformation

– P(t)=T MH GH = T MH (MHB GB) = T (MHMHB) GB = T MB GB

• Bézier Curves & Basis Functionss

– Basis functions: Bernstein polynomials



























0001

0033

0363

1331

HBHB MMM

P (t)=∑i=0

n
B i

n(t)bi

with basis functions Bi
n(t)=(ni) t

i (1−t)n−i

3
3

2
2

1
2

0
3

3

0

3

13131

)(P(t)

bt-t)b(t b-t)t(b-t)(

btB
i ii



 

3
0B

B0
3

B1
3 B2

3

B3
3

Bernstein-
Polynomials

20

Properties: Bézier
• Advantages:

– End point interpolation
– Tangents explicitly specified
– Smooth joints are simple

• P3, P4, P5 collinear  G1 continuous
– Geometric meaning of control points
– Affine invariance

 Bi(t) = 1
– Convex hull property

• For 0<t<1: Bi(t)  0

– Symmetry: Bi(t) = Bn-i(1-t)

• Disadvantages
– Smooth joints need to be maintained explicitly

• Automatic in B-Splines (and NURBS)
• See Geometric Modeling course

21

DeCasteljau Algorithm
• Direct evaluation of the basis functions

– Simple but expensive

• Use recursion
– Recursive definition of the basis functions

– Inserting this once yields:

– with the new Bézier points given by the recursion

)()1()()(11
1 tBtttBtB n

i
n
i

n
i



 











1

0

11

0

0)()()()(
n

i

n
ii

n

i

n
ii tBtbtBbtP

ii
k
i

k
i

k
i btbtbtttbtb  

)(and)()1()()(011
1

22

DeCasteljau Algorithm
• DeCasteljau-Algorithm:

– Recursive degree reduction of the Bezier curve by using the
recursion formula for the Bernstein polynomials

• Example:
– t= 0.5

)()1()()(11
1 tbtttbtb k

i
k
i

k
i



 

1)()()()()(
1

0

11

0

0  








tbtBtbtBbtP n
i

n

i

n
ii

n

i

n
ii 

23

DeCasteljau Algorithm
• Subdivision using the deCasteljau-Algorithm

– Take boundaries of the deCasteljau triangle as new control points
for left/right portion of the curve

• Extrapolation
– Backwards subdivision

• Reconstruct triangle from one side

24

Catmull-Rom-Splines
• Goal

– Smooth (C1)-joints between (cubic) spline segments

• Algorithm
– Tangents given by neighboring points Pi-1 Pi+1

– Construct (cubic) Hermite segments

• Advantage
– Arbitrary number of control points
– Interpolation without overshooting
– Local control

25

Matrix Representation
• Catmull-Rom-Spline

– Piecewise polynomial curve
– Four control points per segment
– For n control points we obtain (n-3) polynomial segments

• Application
– Smooth interpolation of a given sequence of points
– Key frame animation, camera movement, etc.
– Only G1-continuity
– Control points should be equidistant in time





















































T

T

T

T

CRCR
i

i

i

i

i

P

P

P

P

TGTtP

3

2

1

0020

0101

1452

1331

2

1
)(M __

26

Choice of Parameterization
• Problem

– Often only the control points are given
– How to obtain a suitable parameterization ti ?

• Example: Chord-Length Parameterization

– Arbitrary up to a constant factor

• Warning
– Distances are not affine invariant !
– Shape of curves changes under transformations !!








i

j
iii PPdistt

t

1
1

0

)(

0

27

Parameterization
• Chord-Length versus uniform Parameterization

– Analog: Think P(t) as a moving object with mass that may
overshoot

Uniform

Chord-Length

Spline Surfaces

Parametric Surfaces
• Same Idea as with Curves

– P: R2  R3

– P(u,v) = (x(u,v), y(u,v), z(u,v))T R3 (also P(R4))

• Different Approaches
– Tensor Product Surfaces

• Separation into polynomials in u and in v
• Discussed here (see Geometric Modeling

course for others)
– Subdivision Surfaces

• Start with a triangular mesh in R3

• Subdivide mesh by inserting new vertices
– Depending on local neighborhood

• Only piecewise parameterization
(in each triangle)

– Triangular Splines
• Single polynomial in (u,v) via barycentric

coordinates with respect to a
reference triangle (e.g. B-Patches)

Tensor Product Surfaces
• Idea

– Create a “curve of curves"

• Simplest case: Bilinear Patch
– Two lines in space

– Connected by lines

– Bézier representation (symmetric in u and v)

– Control mesh Pij

))1(())1)((1(

)()()1(),(

11011000

21

PvPvuPvPvu

vPuvPuvuP





P00
P01

P10

P11

u

v





1

0,

11)()(),(
ji

ijji PvBuBvuP

1101
2

1000
1

)1()(

)1()(

PvPvvP

PvPvvP





Tensor Product Surfaces
• General Case

– Arbitrary basis functions in u and v
• Tensor Product of the function space in u and v

– Commonly same basis functions and same degree in u and v

• Interpretation
– Curve defined by curves

– Symmetric in u and v


 


m

i

n

j
ij

n
j

m
i PvBuBvuP

0 0

)()(),(

P (u ,v)=∑
i=0

m

Bi
´ (u)∑

j=0

n

B j(v)P ij
⏟

P i
´
(v)

Matrix Representation
• Similar to Curves

– Geometry now in a „tensor“ (m x n x 3)

– Degree
• u: m
• v: n
• Along the diagonal (u=v): m+n

– Not nice  „Triangular Splines“

 

TT
VUV

n

n

nnn

mT
monom

VU

v

v

GG

GG

uuVUvuP

U
BGB

G

´

000

0

1

1),(
















































Tensor Product Surfaces
• Properties Derived Directly From Curves
• Bézier Surface:

– Surface interpolates corner vertices of mesh
– Vertices at edges of mesh define boundary curves
– Convex hull property holds
– Simple computation of derivatives
– Direct neighbors of corners vertices define tangent plane

• Similar for Other Basis Functions

Tensor Product Surfaces
• Modifying a Bézier Surface

Tensor Product Surfaces
• Representing the Utah Teapot as a set continuous

Bézier patches
– http://www.holmes3d.net/graphics/teapot/

Operations on Surfaces
• deCausteljau/deBoor Algorithm

– Once for u in each column
– Once for v in the resulting row
– Due to symmetry also in other order

• Similarly we can derive the related algorithms
– Subdivision
– Extrapolation
– Display
– ...

Ray Tracing of Spline Surfaces
• Several approaches

– Tessellate into many triangles (using deCasteljau or deBoor)
• Often the fasted method
• May need enormous amounts of memory

– Recursive subdivision
• Simply subdivide patch recursively
• Delete parts that do not intersect ray (Pruning)
• Fixed depth ensures crack-free surface
• May cache intermediate results for next rays

– Bézier Clipping [Sederberg et al.]
• Find two orthogonal planes that intersect in the ray
• Project the surface control points into these planes
• Intersection must have distance zero

 Root finding
 Can eliminate parts of the surface

 where convex hull does not intersect ray
• Must deal with many special cases – rather slow

Bézier Clipping

Bézier Clipping

Higher Dimensions
• Volumes

– Spline: R3  R
• Volume density
• Rarely used

– Spline: R3  R3

• Modifications of points in 3D
• Displacement mapping
• Free Form Deformations (FFD)

FFD

	Computer Graphics - Splines -
	Curves
	Parametric curves
	Monomials
	Derivatives
	More on Continuity
	Linear Interpolation
	Lagrange Interpolation
	Folie 9
	Problems
	Splines
	Hermite Interpolation
	Folie 13
	Examples: Hermite Interpolation
	Folie 16
	Folie 17
	Bézier
	Basis transformation
	Properties: Bézier
	DeCasteljau Algorithm
	Folie 22
	Folie 23
	Catmull-Rom-Splines
	Folie 25
	Choice of Parameterization
	Parameterization
	Slide 16
	Parametric Surfaces
	Tensor Product Surfaces
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Operations on Surfaces
	Ray Tracing of Spline Surfaces
	Bézier Clipping
	Folie 39
	Higher Dimensions

