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Vector Space

 Math recap
— 3D vector space over the real numbers

%1
. v=<vz> eV3=R3
U3

— Vectors written as n x 1 matrices
— Vectors describe directions — not positions!

« All vectors conceptually start from the origin of the coordinate system
— 3 linear independent vectors create a basis

 Standard basis €3

B 1 R

— Any 3D vector can be represented uniquely with coordinates v;
with respect to a basis

° V=716 + VUy€r + V3€e3 V1, V3, U3 eER




Vector Space - Metric

« Standard scalar product, a.k.a. dot or inner product
— U-V=uv; +uUv, +uUzls
— Used to measure lengths
s w|?=v-v=v{+vs+vs
— Used to compute angles
* u-v=|ullv|cos(u,v)
— Projection of vectors onto other vectors

u-v u-v
|U| COS(Q) = m = \/T_v
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Vector Space - Basis

 Orthonormal basis
— Unit length vectors
* el =leil=leq|=1
— Orthogonal to each other
* e e =0
« Handedness of a coordinate system
— Two options: e; X e, = +eg
« Positive: Right-handed (RHS)
* Negative: Left-handed (LHS)
— Example: Screen Space

« Typical: X goes right, Y goes up (thumb & index finger, respectively)

* In a RHS: Z goes out of the screen (middle finger)
— Be careful:

« Most systems nowadays use a right handed coordinate system
« But some are not (e.g. RenderMan) - can cause lots of confusion




Affine Space

 Basic mathematical concept
— Denoted as A3
« Elements are positions (not directions!)
— Defined via its associated vector space V3
e gqbeAloFveVdiv=b—a
* —:unique, «: ambiguous
— Operations on A3
« Subtraction of two elements yields a vector
« No addition of affine elements
— Its not clear what sum of two points would even mean
« But: Addition of points and vectors:
—a+v=beAd
« Distance
— dist(a,b) = |a — b|




Affine Space - Basis

« Affine Basis

— Given by its origin o (a point) and the basis of an associated
vector space

: 3. 3
 {eq,e5,e3,0}: eq,ep,e3€EV>0€A

* Position vector of point p
— (p—o)isin V3




Affine Coordinates

« Affine Combination
— Linear combination of (n+1) points
* Py, .., Pyp €A™
— With weights forming a partition of unity
* ay, ...,y € Rwith };a; =1
— P =Xio@iPi =Po t 2i=1ai(pi — Do) =0 + XL vy
 Basis
— (n + 1) points form am affine basis of A»

« |Iff none of these point can be expressed as an affine combination of
the other points

« Any point in A™ can then be uniquely represented as an affine
combination of the affine basis py, ..., p, € A™

* Any point in another basis can also be expressed as a linear
combination of the p;, yielding a matrix for the basis transform




Affine Coordinates

* Closely related to “Barycentric Coordinates”
— Center of mass of (n+ 1) points

with arbitrary masses (weights) m; is given as P N\Z .
. o= ZMPi _ v My e
p = Ym; - szl Zalpl p J
« Convex / Affine Hull P2

— If all ; are non-negative than p is in the convex huII
of the other points

e In1D
— Point is defined by the splitting ratio a,: a,

|p—p-| P Ip—p1I
|2 —D4l 1+ 1D2—

* p=a1pr + azxpy =

e In2D

— Weights are the relative areas in A(4,,4,,4A3)
— AP AGi+D %3 Ali+2)%3)

A(A1,42,45) Note: Length and area
* p= alAl + aZAZ + a3A3 measures are signed here

(1,0,0) (1/2,1/2,0) (0,1,0)

(214 004)  (14172,114)
(1/3.173.1/3)

(1/4,174,112)




Affine Mappings

* Properties

— Affine mapping/transformations (continuous, bijective, invertible)
° T A3 _)AB

— Defined by two non-degenerated simplicies (that define a basis)
« 2D: Triangle, 3D: Tetrahedron, ...

— Invariants under affine transformations:
« Barycentric/affine coordinates
« Straight lines, parallelism, splitting ratios, surface/volume ratios

— Characterization via fixed points and lines
« Given as eigenvalues and eigenvectors of the mapping

* Representation
— Matrix product and a translation vector:
« Tp = Ap + t withA € R™", t € R"
— Invariance of affine coordinates
* Tp =T(Za;p) = AQa;p;) +t = Ya;(Ap) + Yait = Y a;(Tp;)




Homogeneous Coordinates for 3D

« Homogeneous embedding of R3into the projective 4D
space P(R%)
— Mapping into homogeneous space

X X
. R33 <y> - <§> € P(R%)
‘ 1

— Mapping back by dividing through fourth component

X X /W
. ; — | Y/W
Z/W

w

« Conseguence
— This allows to represent affine transformations as 4x4 matrices
— Mathematical trick

 Convenient representation to express rotations and translations as
matrix multiplications

« Easyto find line through points, point-line/line-line intersections
— Also allows to define projections (later)




Point Representation in 2D or P(3D)

 Point in homogeneous coordinates

— All points along a line through the origin map to the same point in
2D




Homogeneous Coordinates In 2D

« Some tricks (work only in P(R3), i.e. only in 2D)
— Point representation

X
. (X) = (vyv> € P(R?), (;) = @%)

— Representation of a line [ € R?
« Dot product of [ vector with pointin plane must be zero:
x a
-1l = {(y)|ax+by +c-1= 0} = {X EP(R)IX I = 0,1=(b>}

Cc
« Line | is normal vector of the plane through origin and points on line

— Line trough 2 points p and p’
« Line must be orthogonal to both points
e peElANpP ElSI=pXD
— Intersection of lines | and I':
« Point on both lines = point must be orthogonal to both line vectors
e Xelnl'eX=Ix!




Line Representation

« Definition of a 2D Line in P(R3)
— Set of all point P where the dot product with | is zero




Line Representation

 Line
— Represented by normal vector to plane through line and origin

ax +by+c-1=0




Line through 2 Points

e Construct line through two points
— Line vector must be orthogonal to both points
— Compute through cross product of point coordinates

p=(XYW)
p,:(X,’Y,’W’

[=pXxp




Intersection of Lines

« Construct intersection of two lines
— A point that is on both lines and thus orthogonal to both lines
« Computed by cross product of both line vectors

=

4




Orthonormal Matrices

 Columns are orthogonal vectors of unit length
— An example

0 0 1
. (1 0 0)
0 1 0
— Directly derived from the definition of the matrix product:
« MM =1

— In this case the transpose must be identical to the inverse:
o M—l — MT




Linear Transformation: Matrix

 Transformations in a Vector space: Multiplication by
a Matrix
— Action of a linear transformation on a vector
« Multiplication of matrix with column vectors (e.g. in 3D)

X' Tez\ /x
p' = (Y'> =Tp=|Tyx Tyy Ty: <Y>
A Tye Tpy Typ) \Z

« Composition of transformations
— Simple matrix multiplication (T ¢, then T>)
* TyT1p =T(T1p) = (T;Tp=Tp
— Note: matrix multiplication is associative but not commutative!
« T,T4is notthe same as T{T, (in general)

o3
&
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Affine Transformation

« Remember:
— Affine map: Linear mapping and a translation
c Tp=Ap+t
 For 3D: Combining it into a single matrix

— Using homogeneous 4D coordinates
— Multiplication by 4x4 matrix in P(R#) space

X' Tyex Txy Tz Thw X
.« p = Y' | _ Tp = Ty Tyy Tyz Tyw [[ ¥
Z' Tzx sz Tzz  Tzw Z
w’ Twx Twy Twz Tww w

— Allows for combining (concatenating) multiple transforms into one
using normal (4x4) matrix products

* Let’s go through the different transforms we need:




Transformations: Translation

* Translation (T)

— T(ty ty, t,)p = (

o = O O
~_
>
=N R
~__—

|l
/O~

N K X
-+ 4+ +
O ST S
~_

O O K
o O = O

T(2,1)B




Translation of Vectors

« So far: only translated points
* Vectors: Difference between 2 points

Px A x Px — qx
_ _ py Qy — py — Qy
— v —_— — o — —
P—q <pz> <CIZ> Pz — 4z
1 1 0
— Fourth componentis zero

nslations do not affect vectors!

S

0 t,\ /vy Uy
0 ty \[vy)_ [y
1 ¢, v, |\ v
0 1 0 0

« Consequently: Tr

1
T(ty ty, t,)v = <8
0

OOP—‘OQJ




Translation: Properties

* Properties
— ldentity
« T(0,0,0) =1 (Identity Matrix)
— Commutative (special case)
o T(ty ty,t,)T(tx, by, t;) = T(ts, 65, t)T (b ty, t7) =
T(ty +ty,ty, +t),t, +1t;)
— Inverse

« T 1(ty ty,t,) = T(—ty,—t;, —t;)




Basic Transformations (2)

« Scaling (S)
s, 0 0 0
0 s, 0 O
= Slswsps) =\ g G o
Z
0 0 0 1

— Note: sy, sy, s, = 0 (otherwise see mirror transformation)
— Uniform Scalings: s =s, = x,, = s,

B X S(2,1)B X




Basic Transformations

* Reflection/Mirror Transformation (M)

— Reflection at plane (x=0) b YT b
-1 0 0 0\ /x —X My B B
. [0 1 0 0}y y 7 AL N
M, = 0 0o 1 ollz Z a clc )za
0O 0 0 1 1 1

« Analogously for other axis

* Note: changes orientation
— Right-handed rotation becomes left-handed and v.v.
— Indicated by det(M;) < 0
— Reflection at origin

-1 0 0 0\ —X vt b
. o =1 0o ol\l{y\_ [—vy B
Mo = 0 0 -1 ofJ\z] \-—=z Q
o 0 o0 1/ M 1 < <

« Note: changes orientation in 3D

a W\ c
— But not in 2D (!!): Just two scale factors M. B

— Each scale factor reverses orientation once




Basic Transformations (4)

Shear (H)

— H(hxyr hxz' hJIZ' hisl/x' hZJ() th)
Xz

X X + hxyy + thZ
x 1 hy, OV[Y)\_[Y+hyxxt+hy,z
hzx hzy 1 0 Z Z+ hzxx + hzyy
o o o 1/ 1

— Determinantis 1
* Volume preserving (as volume is just shifted in some direction)
y Y

e

B H(1,0,0,0,0,0)B




Rotation in 2D

* In 2D: Rotation around origin

— Representation in spherical coordinates | y
. x=71rcosfd — x' = T‘COS(Q +¢)
y=r1rsind — y’ =rsin(0 + ¢) R(90°)B

— Well know property

. cos(8 + ¢) = cos B cos ¢ — sin 6 sin ¢

sin(8 + ¢) = cos@ sin¢ + sin 6 cos ¢
— Gives
. x'=(rcosf)cos¢p — (rsinf)sing = xcos¢ — ysin¢g
y' = (rcos@)sing + (rsinf)cos¢p = xsin¢g + ycos¢
— Or in matrix form

__(cos¢p —sing
) Rz(¢)_<sin¢ cosc,b)




Rotation in 3D

« Rotation around major axes

1 0 0 0

|0 cos¢p —singp O

R:(¢) = 0 sing cos¢p O

0 0 0 1

cos¢p 0 singp O

_ 0 1 0 0

- Ry(¢) = singg 0 cos¢p O
0 0 0 1

cos¢p —singg 0 O

' 0 0

- R =| e cosd 00
0 0 0 1

— 2D rotation around the respective axis
» Assumes right-handed system, mathematically positive direction
— Be aware of change in sign on sines in R,, (off diagonal elements)

* Due to relative orientation of other axis




Rotation in 3D (2)

* Properties

— R,(0)=1
- Ra(H)Ra(¢) — Ra(e + d)) - Ra(d))Ra(H)

« Rotations around the same axis are commutative (special case)
— In general: Not commutative

* Rq(6)Rp(¢) # Rp(Pp)R,(6)

« Order does matter for rotations around different axes
— R;'(0) = R,(—0) = R}(6)

« Orthonormal matrix: Inverse is equal to the transpose
— Determinantis 1

* Volume preserving




Rotation Around Point

* Rotate object around a point p and axis a
— Translate p to origin, rotate around axis a, translate back to p

* Ry(p,0) =T(p)Ry(6)T(—p)




Rotation Around Some AXIS

* Rotate around a given point p and vector r (|r|=1)

— Translate so that p is in the origin

— Transform with rotation R=MT
« M given by orthonormal basis (r,s,t) such that r becomes the x axis
« Requires construction of a orthonormal basis (r,s,t), see next slide

— Rotate around x axis

— Transform back with R

— Translate back to point p

A MT A M A

N\ N

S
r 13 \ r
S > { s > t >
X /‘ \_/ X X
I
t Figure without
Z t Z

Z translation aspect

R(p,1,¢) = T(@)M()R, ()M (r)T(—p)




Rotation Around Some AXIS

« Compute orthonormal basis given a 3D vector r

— Using a numerically stable method

— Construct s such thatit is normal to r (r being normalized)
« Use fact thatin 2D, orthogonal vector to (X,y) is (-Y, X)
— Do this in coordinate plane that has largest components

f(O, —1y, ry), ifx = argminx,ylz{lrxl,

¢S = < (_TZ; OJrX)' 1fy — argminx,ylz{lrxll

k(—ry,rx, 0),ifz = argminx,y,z{lrxl,
— Normalize
« s=s'/|s]
— Computet as cross product
e t=rXs

) |rZ|}
;|TZ|}
) |T'Z|}

— 1,5,t forms orthonormal basis, thus M transforms into this basis

e Sy t O
. M) = o Sy t
, S, t, 0
0O 0 0 1

0] . L : _
y , inverse is given as its transpose: M~1 = M7




Concatenation of Transforms

« Multiply matrices to concatenate
— Matrix-matrix multiplication is not commutative (in general)
— Order of transformations matters!

|

T(1,1)B

X

)

R,(45°)B

y
» R,(45°) T(1,1)B

X

RS

T(1,1)R,(45°)B

X




Transformations

Line
— Transform end points

Plane
— Transform three points

Vector
— Translations to not act on vectors

Normal vectors (e.g. plane in Hesse form)
— Problem: e.g. with non-uniform scaling

/ n » %&le
” S(2,1,1) >

B X S(2,1,1)B




Transforming Normals

* Dot product as matrix multiplication

vx
- Mn-v = nTv — (nx ny TLZ) <vy>
vZ
« Normal N on a plane

— For any vector v in the plane: n'v = 0
— Find transformation M’ for normal vector, such that :

(M'n)T(Mv) =0 MTMM1=1M"1
* nT(M"M)v =0 and thus MT=M"1
MT™M =1 M =M™

— M’ s the adjoint of M
e Exists even for non-invertible matrices
« For M invertible and orthogonal: M' = (M )T = (MT)T =M
« Remember:

— Normals are transformed by the transpose of the inverse of the
4x4 transformation matrix of points and vectors




