
Philipp Slusallek

Computer Graphics

- Transformations -

Vector Space
• Math recap

– 3D vector space over the real numbers

• 𝒗 =

𝑣1
𝑣2
𝑣3

∈ 𝑽𝟑 = ℝ𝟑

– Vectors written as n x 1 matrices

– Vectors describe directions – not positions!

• All vectors conceptually start from the origin of the coordinate system

– 3 linear independent vectors create a basis

• Standard basis

𝒆1 , 𝒆2, 𝒆3 =
1
0
0

,
0
1
0

,
0
0
1

– Any 3D vector can be represented uniquely with coordinates 𝑣𝑖
with respect to a basis

• 𝒗 = 𝑣1𝒆𝟏 + 𝑣2𝒆𝟐 + 𝑣3𝒆𝟑 𝑣1, 𝑣2, 𝑣3 ∈ ℝ

e1

e2

e3

Vector Space - Metric
• Standard scalar product, a.k.a. dot or inner product

– 𝑢 ⋅ 𝑣 = 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3
– Used to measure lengths

• 𝑣 2 = 𝑣 ⋅ 𝑣 = 𝑣1
2 + 𝑣2

2 + 𝑣3
2

– Used to compute angles

• 𝑢 ⋅ 𝑣 = 𝑢 𝑣 cos(𝑢, 𝑣)

– Projection of vectors onto other vectors

• 𝑢 cos(𝜃) =
𝑢⋅𝑣

𝑣
=

𝑢⋅𝑣

𝑣⋅𝑣
u

v

ɵ

𝑢 cos(𝜃)

Vector Space - Basis
• Orthonormal basis

– Unit length vectors

• 𝑒1 = 𝑒1 = 𝑒1 =1

– Orthogonal to each other

• 𝑒𝑖 ⋅ 𝑒𝑗 = 𝛿𝑖𝑗

• Handedness of a coordinate system
– Two options: 𝑒1 × 𝑒2 = ±𝑒3

• Positive: Right-handed (RHS)

• Negative: Left-handed (LHS)

– Example: Screen Space

• Typical: X goes right, Y goes up (thumb & index finger, respectively)

• In a RHS: Z goes out of the screen (middle finger)

– Be careful:

• Most systems nowadays use a right handed coordinate system

• But some are not (e.g. RenderMan) → can cause lots of confusion

Affine Space
• Basic mathematical concept

– Denoted as A3

• Elements are positions (not directions!)

– Defined via its associated vector space V3

• 𝑎, 𝑏 ∈ 𝐴3 ⇔ ∃! 𝑣 ∈ 𝑉3: 𝑣 = 𝑏 − 𝑎

• →: unique, ←: ambiguous

– Operations on A3

• Subtraction of two elements yields a vector

• No addition of affine elements

– Its not clear what sum of two points would even mean

• But: Addition of points and vectors:

– 𝑎 + 𝑣 = 𝑏 ∈ 𝐴3

• Distance

– 𝑑𝑖𝑠𝑡 𝑎, 𝑏 = 𝑎 − 𝑏

v

b

a

Affine Space - Basis
• Affine Basis

– Given by its origin o (a point) and the basis of an associated
vector space

• 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒐 : 𝒆𝟏, 𝒆𝟐, 𝒆𝟑 ∈ 𝑉3; 𝒐 ∈ 𝑨𝟑

• Position vector of point p
– (𝑝 − 𝑜) is in 𝑉3

e1

e2

e3

o

p

p-o

Affine Coordinates
• Affine Combination

– Linear combination of (n+1) points

• 𝑝0 , … , 𝑝𝑛 ∈ 𝐴𝑛

– With weights forming a partition of unity

• 𝛼0, … , 𝛼𝑛 ∈ ℝwith σ𝑖 𝛼𝑖 = 1

– 𝑝 = σ𝑖=0
𝑛 𝛼𝑖𝑝𝑖 = 𝑝0 +σ𝑖=1

𝑛 𝛼𝑖(𝑝𝑖 − 𝑝0) = 𝑜 + σ𝑖=1
𝑛 𝛼𝑖𝑣𝑖

• Basis
– (𝑛 + 1) points form am affine basis of 𝐴𝑛

• Iff none of these point can be expressed as an affine combination of
the other points

• Any point in 𝐴𝑛 can then be uniquely represented as an affine
combination of the affine basis 𝑝0 , … , 𝑝𝑛 ∈ 𝐴𝑛

• Any point in another basis can also be expressed as a linear
combination of the 𝑝𝑖, yielding a matrix for the basis transform

Affine Coordinates
• Closely related to “Barycentric Coordinates”

– Center of mass of (𝑛 + 1) points
with arbitrary masses (weights) 𝑚𝑖 is given as

• 𝑝 =
σ𝑚𝑖𝑝𝑖
σ𝑚𝑖

= σ
𝑚𝑖

σ𝑚𝑖
𝑝𝑖 = σ𝛼𝑖𝑝𝑖

• Convex / Affine Hull
– If all 𝛼𝑖 are non-negative than p is in the convex hull

of the other points

• In 1D
– Point is defined by the splitting ratio 𝛼1: 𝛼2

• 𝑝 = 𝛼1𝑝1 + 𝛼2𝑝2 =
𝑝−𝑝2
𝑝2−𝑝1

𝑝1 +
𝑝−𝑝1
𝑝2−𝑝1

𝑝2

• In 2D
– Weights are the relative areas in Δ(𝐴1, 𝐴2, 𝐴3)

• 𝑡𝑖 = 𝛼𝑖 =
Δ(𝑃,𝐴 𝑖+1 %3 ,𝐴 𝑖+2 %3)

Δ(𝐴1,𝐴2,𝐴3)

• 𝑝 = 𝛼1𝐴1 + 𝛼2𝐴2 + 𝛼3𝐴3

p

p1

p2

𝐴1 𝐴2

𝐴3

Note: Length and area

measures are signed here

Affine Mappings
• Properties

– Affine mapping/transformations (continuous, bijective, invertible)

• T: A3 → A3

– Defined by two non-degenerated simplicies (that define a basis)

• 2D: Triangle, 3D: Tetrahedron, ...

– Invariants under affine transformations:

• Barycentric/affine coordinates

• Straight lines, parallelism, splitting ratios, surface/volume ratios

– Characterization via fixed points and lines

• Given as eigenvalues and eigenvectors of the mapping

• Representation
– Matrix product and a translation vector:

• 𝑻𝑝 = 𝑨𝑝 + 𝒕 with A ∈ ℝ𝑛×𝑛, t ∈ ℝ𝑛

– Invariance of affine coordinates

• 𝑻𝑝 = 𝑻 σ𝛼𝑖𝑝𝑖 = 𝑨 σ𝛼𝑖𝑝𝑖 + 𝒕 = σ𝛼𝑖(𝑨𝑝𝑖) + σ𝛼𝑖𝒕 = σ𝛼𝑖(𝑻𝑝𝑖)

Homogeneous Coordinates for 3D

• Homogeneous embedding of R3 into the projective 4D
space P(R4)
– Mapping into homogeneous space

– Mapping back by dividing through fourth component

• Consequence
– This allows to represent affine transformations as 4x4 matrices
– Mathematical trick

• Convenient representation to express rotations and translations as
matrix multiplications

• Easy to find line through points, point-line/line-line intersections

– Also allows to define projections (later)

Point Representation in 2D or P(3D)
• Point in homogeneous coordinates

– All points along a line through the origin map to the same point in
2D

(x,y)

𝑝 = (𝑋,𝑌,𝑊)

W=1

𝑥 =
𝑋

𝑊
𝑦 =

𝑌

𝑊

Homogeneous Coordinates in 2D

• Some tricks (work only in P(R3), i.e. only in 2D)
– Point representation

• 𝑋 =
𝑋
𝑌
𝑊

∈ 𝑃 ℝ3 ,
𝑥
𝑦 =

Τ𝑋 𝑊
Τ𝑌 𝑊

– Representation of a line 𝑙 ∈ ℝ2

• Dot product of 𝑙 vector with point in plane must be zero:

– 𝑙 = ቚ
𝑥
𝑦 𝑎𝑥 + 𝑏𝑦 + 𝑐 ⋅ 1 = 0 = ȁ𝑋 ∈ 𝑃(ℝ3) 𝑋 ⋅ 𝑙 = 0, l=

𝑎
𝑏
𝑐

• Line l is normal vector of the plane through origin and points on line

– Line trough 2 points p and p’

• Line must be orthogonal to both points

• 𝑝 ∈ 𝑙 ∧ 𝑝′ ∈ 𝑙 ⇔ 𝑙 = 𝑝 × 𝑝′

– Intersection of lines l and l’:

• Point on both lines ➔ point must be orthogonal to both line vectors

• 𝑋 ∈ 𝑙 ∩ 𝑙′ ⇔ 𝑋 = 𝑙 × 𝑙′

Line Representation
• Definition of a 2D Line in P(R3)

– Set of all point P where the dot product with l is zero

𝑙 = (𝑎, 𝑏, 𝑐)

𝑝 = (𝑋, 𝑌,𝑊)

𝑝 ⋅ 𝑙 = 0

Line Representation
• Line

– Represented by normal vector to plane through line and origin

𝑙 = (𝑎, 𝑏, 𝑐)

𝑎𝑥 + 𝑏𝑦 + 𝑐 ⋅ 1 = 0

Line through 2 Points
• Construct line through two points

– Line vector must be orthogonal to both points

– Compute through cross product of point coordinates

𝑙 = (𝑎, 𝑏, 𝑐)

𝑝 = (𝑋, 𝑌,𝑊)

𝑝′ = (𝑋, ′ 𝑌, ′ 𝑊′)

𝑙 = 𝑝 × 𝑝′

Intersection of Lines
• Construct intersection of two lines

– A point that is on both lines and thus orthogonal to both lines

• Computed by cross product of both line vectors

𝑙
𝑙′

𝑝

𝑝 = 𝑙 × 𝑙′

Orthonormal Matrices
• Columns are orthogonal vectors of unit length

– An example

•
0 0 1
1 0 0
0 1 0

– Directly derived from the definition of the matrix product:

• 𝑀𝑇𝑀 = 1

– In this case the transpose must be identical to the inverse:

• 𝑀−1 ≔ 𝑀𝑇

Linear Transformation: Matrix
• Transformations in a Vector space: Multiplication by

a Matrix
– Action of a linear transformation on a vector

• Multiplication of matrix with column vectors (e.g. in 3D)

𝑝′ =
𝑋′

𝑌′

𝑍′
= 𝑻𝑝 =

𝑇𝑥𝑥 𝑇𝑥𝑦 𝑇𝑥𝑧
𝑇𝑦𝑥 𝑇𝑦𝑦 𝑇𝑦𝑧
𝑇𝑧𝑥 𝑇𝑧𝑦 𝑇𝑧𝑧

𝑋
𝑌
𝑍

• Composition of transformations
– Simple matrix multiplication (𝑻𝟏, then 𝑻𝟐)

• 𝑻𝟐𝑻𝟏𝑝 = 𝑻𝟐 𝑻𝟏𝑝 = 𝑻𝟐𝑻𝟏 𝑝 = 𝑻𝑝

– Note: matrix multiplication is associative but not commutative!

• 𝑻𝟐𝑻𝟏 is not the same as 𝑻𝟏𝑻𝟐 (in general)

Affine Transformation
• Remember:

– Affine map: Linear mapping and a translation

• 𝑻𝑝 = 𝑨𝑝 + 𝒕

• For 3D: Combining it into a single matrix
– Using homogeneous 4D coordinates

– Multiplication by 4x4 matrix in P(R4) space

– Allows for combining (concatenating) multiple transforms into one
using normal (4x4) matrix products

• Let’s go through the different transforms we need:

Transformations: Translation
• Translation (T)

T(2,1)B

B x

y

Translation of Vectors
• So far: only translated points

• Vectors: Difference between 2 points

=

– Fourth component is zero

• Consequently: Translations do not affect vectors!

Translation: Properties
• Properties

– Identity

• 𝑻 0,0,0 = 𝟏 (Identity Matrix)

– Commutative (special case)

• 𝑻 𝑡𝑥, 𝑡𝑦, 𝑡𝑧 𝑻 𝑡𝑥
′ , 𝑡𝑦

′ , 𝑡𝑧
′ = 𝑻 𝑡𝑥

′ , 𝑡𝑦
′ , 𝑡𝑧

′ 𝑻 𝑡𝑥, 𝑡𝑦 , 𝑡𝑧 =
𝑻(𝑡𝑥 + 𝑡𝑥

′ , 𝑡𝑦 + 𝑡𝑦
′ , 𝑡𝑧 + 𝑡𝑧

′)

– Inverse

• 𝑻−𝟏 𝑡𝑥, 𝑡𝑦 , 𝑡𝑧 = 𝑻 −𝑡𝑥
′ ,−𝑡𝑦

′ , −𝑡𝑧
′

Basic Transformations (2)
• Scaling (S)

– Note: 𝑠𝑥 , 𝑠𝑦, 𝑠𝑧 ≥ 0 (otherwise see mirror transformation)

– Uniform Scaling s: s = 𝑠𝑥 = 𝑥𝑦 = 𝑠𝑧

B x

y

S(2,1)B x

y

Basic Transformations
• Reflection/Mirror Transformation (M)

– Reflection at plane (x=0)

• Analogously for other axis

• Note: changes orientation

– Right-handed rotation becomes left-handed and v.v.

– Indicated by det 𝑀𝑖 < 0

– Reflection at origin

• Note: changes orientation in 3D

– But not in 2D (!!!): Just two scale factors

– Each scale factor reverses orientation once

B

x

y
Mx B

B

x

y

Mo B

a a

bb

c c

a

b

c

a

b

c

Basic Transformations (4)
• Shear (H)

– 𝑯 ℎ𝑥𝑦, ℎ𝑥𝑧, ℎ𝑦𝑧, ℎ𝑦𝑥, ℎ𝑧𝑥 , ℎ𝑧𝑦 =

– Determinant is 1

• Volume preserving (as volume is just shifted in some direction)

B x

y

H(1,0,0,0,0,0)B
x

y

Rotation in 2D
• In 2D: Rotation around origin

– Representation in spherical coordinates

•
𝑥 = 𝑟 cos𝜃 ⟶ 𝑥 ′ = 𝑟 cos(𝜃 + 𝜙)

𝑦 = 𝑟 sin𝜃 ⟶ 𝑦′ = 𝑟 sin(𝜃 + 𝜙)

– Well know property

•
cos 𝜃 + 𝜙 = cos𝜃 cos𝜙 − sin 𝜃 sin𝜙

sin 𝜃 + 𝜙 = cos𝜃 sin𝜙 + sin 𝜃 cos𝜙

– Gives

•
𝑥 ′ = 𝑟 cos𝜃 cos𝜙 − 𝑟 sin 𝜃 sin𝜙 = 𝑥 cos𝜙 − 𝑦 sin𝜙

𝑦′ = 𝑟 cos𝜃 sin𝜙 + 𝑟 sin 𝜃 cos𝜙 = 𝑥 sin𝜙 + 𝑦 cos𝜙

– Or in matrix form

• 𝑅𝑧 𝜙 =
cos𝜙 −sin𝜙
sin 𝜙 cos𝜙

R(90°)B

B x

y

x

y

ɵ

ɸ

x’

y’

Rotation in 3D
• Rotation around major axes

– 2D rotation around the respective axis

• Assumes right-handed system, mathematically positive direction

– Be aware of change in sign on sines in 𝑹𝒚 (off diagonal elements)

• Due to relative orientation of other axis

Rotation in 3D (2)
• Properties

– 𝑹𝒂 0 = 𝟏

– 𝑹𝒂 𝜃 𝑹𝒂 𝜙 = 𝑹𝒂 𝜃 +𝜙 = 𝑹𝒂 𝜙 𝑹𝒂 𝜃

• Rotations around the same axis are commutative (special case)

– In general: Not commutative

• 𝑹𝒂 𝜃 𝑹𝒃 𝜙 ≠ 𝑹𝒃 𝜙 𝑹𝒂 𝜃

• Order does matter for rotations around different axes

– 𝑹𝒂
−𝟏 𝜃 = 𝑹𝒂 −𝜃 = 𝑹𝒂

𝑻 𝜃

• Orthonormal matrix: Inverse is equal to the transpose

– Determinant is 1

• Volume preserving

Rotation Around Point
• Rotate object around a point p and axis a

– Translate p to origin, rotate around axis a, translate back to p

• 𝑹𝒂 𝑝, 𝜃 = 𝑻 𝑝 𝑹𝒂 𝜃 𝑻 −𝑝

B x

y

p

B’= T(-p)B
x

y

p

B’’= Rz(θ)B’
x

y

p

T(p)B’’
x

y

p

Rotation Around Some Axis
• Rotate around a given point p and vector r (|r|=1)

– Translate so that p is in the origin

– Transform with rotation R=MT

• M given by orthonormal basis (r,s,t) such that r becomes the x axis

• Requires construction of a orthonormal basis (r,s,t), see next slide

– Rotate around x axis

– Transform back with R-1

– Translate back to point p

x

y

z

r

t

s
x

y

z

r
t

s

x

y

z

r

t

MT M

𝑅 𝑝, 𝑟, 𝜙 = 𝑇(𝑝)𝑀(𝑟)𝑅𝑥 𝜙 𝑀𝑇(𝑟)T(−p)

s

Figure without

translation aspect

Rotation Around Some Axis
• Compute orthonormal basis given a 3D vector r

– Using a numerically stable method
– Construct s such that it is normal to r (r being normalized)

• Use fact that in 2D, orthogonal vector to (x,y) is (-y, x)

– Do this in coordinate plane that has largest components

– Normalize

• 𝑠 = Τ𝑠′ 𝑠′
– Compute t as cross product

• 𝑡 = 𝑟 × 𝑠

– r,s,t forms orthonormal basis, thus M transforms into this basis

Concatenation of Transforms
• Multiply matrices to concatenate

– Matrix-matrix multiplication is not commutative (in general)

– Order of transformations matters!

B x

y T(1,1)B

x

y

Rz(45°)B x

y

Rz(45°) T(1,1)B

x

y

T(1,1)Rz(45°)B

x

y

Transformations
• Line

– Transform end points

• Plane
– Transform three points

• Vector
– Translations to not act on vectors

• Normal vectors (e.g. plane in Hesse form)
– Problem: e.g. with non-uniform scaling

B x

y

n

S(2,1,1)B x

y

S(2,1,1)n

S(2,1,1)

Transforming Normals
• Dot product as matrix multiplication

• Normal N on a plane
– For any vector 𝑣 in the plane: 𝑛𝑇𝑣 = 0
– Find transformation 𝑴’ for normal vector, such that :

and thus

– 𝑴’ is the adjoint of 𝑴
• Exists even for non-invertible matrices

• For 𝑴 invertible and orthogonal: 𝑀′ = 𝑀−1 𝑇 = 𝑀𝑇 𝑇 = 𝑀

• Remember:
– Normals are transformed by the transpose of the inverse of the

4x4 transformation matrix of points and vectors

