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Dirac Comb Function (1)

Ortsbereich

e Constant &
6-function o1

S ‘_ _ ——
X

Konstante Funktion

h(x)4

-

X

Delta-Funktion

. fr(x}“'
runction | [1|]] ]+

Kamm-Funktion

Mx =K

O L
Hiu) = K& ()
h(x) = K5 (x)
o, —@
H@) =K

hA(x) = iﬁ {(x —kAx)

O @

-

L

Ortsfrequenzbereich
H(u)

Delta-Funktion

H(u)4

Konstante Funktion

H(t) T

Yl i
ar

Kamm-Funktion

2



Dirac Comb (2)

e Constant & §-Function

— Duality
fx) =K
F(w) = Ké(w)

— And vice versa

« Comb function
— Duality: the dual of a comb function is again a comb function
 Inverse wavelength
« Amplitude scales with inverse wavelength
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Sampling

o CO n tl n u O u S fu n Ct I O n Space demuin = Fourier domain

.. Symboli
— Assume band-limited reprgrsnen?;fion

A

Fouy,
— Finite support of Fourier transform /\/\/\

« Depicted symbolically here as
triangle-shaped finite spectrum
(not meant to be a tent function) 0y (o)

« Sampling at discrete points H‘H HW L_J [

1 I 1 1 - .:h_. |,+ IRAY
— Multiplication with Comb function ) -
In Spatlal domaln flxisty, Fleriaiuy

— Corresponds to convolution in JH|!. /\ /\/\
Fourier domain
= Multiple copies of the original
spectrum (convolution theorem!) | ‘ [ /\/\/\

 Frequency bands overlap ? Y

— No : Sampling was high enough % : l , ﬂﬂ—

— Yes: aliasing artifacts
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Reconstruction

* Only original frequency band
desired

* Filtering
— In Fourier domain:

» Multiplication with windowing function
around origin (low-pass filter)

— In spatial domain

« Convolution with inverse Fourier
transform of windowing function

* Optimal filtering function
— Box function in Fourier domain
— Corresponds to sinc in spatial domain

« Unlimited region of support

« Spatial domain only allows
approximations due to finite support
of practical filters

Spuace domain
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Reconstruction Filter

« Simply cutting off the spatial support of the
sinc function to limitsupport is NOT a good solution

— Re-introduces high-frequencies = spatial ringing
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Sampling and Reconstruction

Original function and
its band-limited
frequency spectrum

Signal sampling
beyond Nyquist:

Mult./conv. with comb

Frequency spectrum
IS replicated

Comb dense enough
(sampling rate >
2*bandlimit)

Bands do not overlap

Ideal filtering

Fourier: box (mult.)
Space: sinc (conv.)

Only one copy
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Sampling and Reconstruction

Reconstruction
with ideal sinc

Identical signal

Non-ideal filtering

Fourier: sinc? (mult.)
Space: tent (conv.)

Artificial high frequen.

are not cut off
=> Aliasing artifacts

Reconstruction with
tent function

(= piecewise linear
Interpolation)
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Sampling at Too Low Freguency

Original function and
its band-limited | ) | Flu)|
frequency spectrum 7;' 2
Signal sampling below | 5 4
Nyquist: 25 2
0
Mult./conv. with comb 0 16 32 48 64 ° B 5 = : )
Comb spaced too far @
(sampling rate < ‘ 4
2*bandlimit) -7: o 1l 2
specromacveta: | 3 |1t v
artificial low frequenci. | ol LTI oM |
[r—— 0 16 32 48 64 -2 -1 0 1 2
|deal filtering (0)
Fourier: box (mult.) 1 A 4
Space: sinc (conv.) 2 N l | 3 |
. | 2
Band overlap in - MUHMMHH |~\ MIJHMHJ 1
frequency domain vV 0
cannot be corrected 0 16 32 48 64 2 0 1 2
= Aliasing (©)




Sampling at Too Low Freguency

Reconstruction
with ideal sinc

1 8

Reconstruction fails 75| 6

(frequency 5 M

components wrong ol y

due to aliasing !) oL o — MNP
—s:e™——— e —"— 0 16 32 48 64 -2 1 0 1 2

Non-ideal filtering (d)

Fourier: sinc2 (mult.) :

Space: tent (conv.) Z
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= Aliasing artifacts ()

Reconstruction with
tent function

(= piecewise linear P
Interpolation)
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Allasing

* High frequency components from the copies appear
as low frequencies for the reconstruction process
* In Fourier space:
Nyquist satisfied Nyquist violated
— Original spectrum

— Sampling comb

— Resulting spectrum

— Reconstruction filter

— Reconstructed spectrum

vAIiasing
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Alilasing in 1D
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Alilasing in 2D

[wikipedia]

This original image sampled at these locations yields this reconstruction.



http://de.wikipedia.org/wiki/Bild:Zonenplatte_Cosinus.png
http://de.wikipedia.org/wiki/Bild:30_Abtastpunkte.png
http://de.wikipedia.org/wiki/Bild:Zonenplatte_Cosinus_Alias.jpg

Alilasing in 2D

« Spatial sampling = repeated frequency spectrum
« Spatial conv. with box filter = spectral mult. with sinc

B il

) Simulation of a perfect line

(c) Simulation of a jagaed line 1<) Fourier transtorm of (¢) - — 1 T




Causes for Aliasing

It all comes from sampling at discrete points
— Multiplication with comb function
— Comb function: replicates the frequency spectrum

Issue when using non-band-limited primitives
— E.g., hard edges — infinitely high frequencies

In reality, integration over finiteregion necessary
— E.g., finite pixel size in sensor, integrates in the analog domain

Computer: analytic integration often not possible
— No analytic description of radiance or visible geometry available

Only way: numerical integration

— Estimate integral by taking multiple point samples, average
« Leads to aliasing

— Computationally expensive & approximate

Important:
— Distinction between sampling errors and reconstruction errors




Sampling Artifacts

« Spatial aliasing
— Staircases, Moire patterns (interference), etc...

« Solutions

— Increasing the sampling rate
« OK, but we have infinite frequencies at sharp edges

— Post-filtering (after reconstruction)
» Too late, does not work - only leads to blurred staircases

— Pre-filtering (blurring) of sharp features in analog domain (edges)
« Slowly make geometry “fade out” at the edges?
 Correct solution in principle, but blurred images might not be useful
 Analytic low-pass filtering hard to implement

— Super-sampling (see later)
* On the fly re-sampling: densely sample, filter, down sample




Sampling Artifacts in Time

 Temporal aliasing

oot carneet.. (T) (YNNI

« Solutions

— Increasing the frame rate
« OK

— Post-filtering (averaging several frames) @
« Does not work — creates replicas of details

— Pre-filtering (motion blur)
« Should be done on the original analog signal
« Possible for simple geometry (e.g., cartoons)
* Problems with texture, etc...

— Super-sampling (see later)
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Antialiasing by Pre-Filtering

* Filtering before sampling
— Analog/analytic original signal

— Band-limiting the signal

— Reduces Nyquist frequency

for chosen sampling-rate

ldeal reconstruction
— Convolution with sinc

Practical reconstruction

— Convolution with
» Box filter, Bartlett (tent)
— Reconstruction error

Reconstructed

signal
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Sources of High Freqguencies

Geometry
— Edges, vertices, sharp boundaries
— Silhouettes (view dependent)

Texture
— E.g., checkerboard pattern, other discontinuities, ...

lllumination
— Shadows, lighting effects, projections, ...

Analytic filtering almost impossible

— Even with the simplest filters




Comparison

* Analytic low-pass filtering (pixel/triangle overlap)

— ldeally eliminates aliasing completely

— Complex to implement
« Compute distance from pixel to a line
« Weighted or unweighted area evaluation
 Filter values can be stored in look-up tables
 Fails at corners
« Possibly taking into account slope

* Over-/Super-sampling A

— Very easy to implement
— Does not eliminate aliasing completely

« Sharp edges contain infinitely high frequencies
— Butit helps: ...
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Re-Sampling Pipeline

« Assumption
— Energy in higher frequencies typically decreases quickly
— ldea: Reduced aliasing by sampling at higher frequency

« Algorithm

— Super-sampling
« Sample continuous signal with high frequency f;
 Aliasing (only here!) with energy beyond f; ( )

— Reconstruction of signal
* Filtering with g, (x): e.g., convolution with sincg,
« Exact representation with sampled values !!

— Analytic low-pass filtering of signal
* Filtering with filter g, (x) where f,<< f; e —

 Signal is now band-limited w.r.t. f,

— Re-sampling with a sampling frequency that is compatible with £,
* No additional aliasing

— Filters g, (x) & g,(x) can be combined
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Super-Sampling in Practice

* Regular super-sampling
— Averaging of N samples per pixel
— N: 4 (quite good already), 16 (often sufficient)

— Samples: rays, z-buffer, motion, reflection, ...
— Filter weights
« Box filter
« Others: B-spline, pyramid (Bartlett), hexagonal, ...

— Sampling Patterns (left to right)
* Regular: aliasing likely

Random: often clumps, incomplete coverage

Poisson Disc: close to perfect, but can be costly

Jittered: randomized regular sampling

Most often (in HW): rotated grid pattern

S
.




Super-Sampling Caveats

Popular mistake
— Sampling at the corners of every pixel ° o o
— Pixel color by averaging from corners
— Free super-sampling ?7??

Problem

. o Q o)
— Wrong reconstruction filter !!!
— Same sampling frequency, but
post-filtering with a tent function
o, O O

— Blurring: loss of information
Post-reconstruction blur

ﬁﬁ

1x1 Sampling, 3x3 Blur 1x1 Sampling, 7x7 Blur
There is no “free” Super-sampling




Adaptive Super-Sampling

* |dea: locally adapt sampling density
— Slowly varying signal (mostly low frequencies): low sampling rate
— Strong changes (mostly high frequencies): high sampling rate
 Decide sampling density locally

« Decision criterion:
— Differences of pixel values
— Contrast (relative difference)
* |A-B[ 7 (|A[+[B])
— Others

24



Adaptive Super-Sampling

« Recursive algorithm s 2 =
— Sampling at pixel corners and center [
— Decision criterion for corner-center pairs
 Differences, contrast, object/shader-IDs, ...
— Subdivide quadrant by adding 3 diag. points
— Filtering with weighted averaging
 Tile: ¥ from each quadrant

D N R C
« Leaf quadrant: %2 (center + corner)
— Box filter with final weight proport. to area — A F B
c
A+E D+E 1F+G B+G HA+G 1{]+K G+K L+K E+K}] J
12+2+42+2+2+42+2+2 2 KL
4 1[E+M H+M N+M 1{M+Q P+Q C+Q R+Q}] E -
2 + 2 +4 2 2 2 2
M e
: - N Q
 Extension v b TC

— Jittering of sample points
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Stochastic Super-Sampling

 Problems with regular super-sampling
— Nyquist frequency for aliasing only shifted
— Expensive: e.q., 4-fold or 16-fold effort
— Non-adaptive: same effort everywhere
— Too regular: reduction of effective number of axis-aligned levels

* Introduce irregular sampling pattern

(@
© 0 0 O _ o © o
triangle edge o
@ © 0 ©° © o
o ©
To @ © ©o T T o o T
(@
‘
© 0 0 O O o o
Only 5 levels Up to 17 levels:

0 > 4/16 - 8/16 > 12/16 - 16/16: better, but noisy
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Stochastic Sampling

* Requirements
— Even sample distribution: no clustering
— Little correlation between positions: no alignment
— Incremental generation: on demand as needed

* Generation of samples
— Poisson-disk sampling
« Random generation of samples
* Rejection if closer than min distance to other samples
— Jittered sampling
« Random perturbation from regular positions
— Stratified sampling
« Subdivision into areas with one random sample in each
* Improves even distribution
— Quasi-random numbers (Quasi-Monte Carlo)
« E.g. Halton sequence
« Advanced feature: see RIS course for more details

,,,,,




Poisson-Disk Sample Distribut.

« Motivation
— Distribution of the optical receptors on the retina (here: ape)

© Andrew Glassner, Intro to Raytracing
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Distribution of the photo-receptors Fourier analysis

28



Stochastic Sampling

« Slowly varying function in sample domain
— Closely reconstructs target value with few samples

* Quickly varying function in sample domain
— Transforms energy in high-frequency bands into noise
— Reconstructs average value as sample count increases

Extent of

sampling
error

— S

Extent of Sample
sample jitter interval

(a)

Extent of
sampling
error

Extent of sample jitter

Sample interval
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Examples

« Spatial sampling: triangle comb
— (c) 1 sample/pixel, no jittering: aliasing
— (d) 1 spp, jittering: noise
— (e) 16 spp, no jittering: less aliasing
— (f) 16 spp, jittering: less noiske |

« Temporal sampling: motion blur
— (@) 1 time sample, no jittering: aliasing
— (b) 1 time sample, jittering/pixel: noise
— (c) 16 samples, no jittering: less aliasing
— (d) 16 samples, jittering/pixel: less noise

FERRRRRERENRRN
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Comparison

Regular, 1x1

 Regular, 3x3

 Regular, 7x7

e Jittered, 3x3

o Jittered, 7x7




