
Philipp Slusallek

Computer Graphics

- Clipping -

Clipping
• Motivation

– Projected primitive might fall (partially) outside of screen window

• E.g., if standing inside a building

– Eliminate non-visible geometry early in the pipeline to process
visible parts only

– Happens after transformation from 3D to 2D

– Must cut off parts outside the window

• Outside geometry might not be representable (e.g., in fixed point)

• Cannot draw outside of window (e.g., plotter (hardly exist anymore))

– Must maintain information properly

• Drawing the clipped geometry should give the correct results:

– E.g., correct interpolation of colors across triangle even when clipped

• Type of geometry might change

– Cutting off a vertex of a triangle produces a quadrilateral (up to hexagon)

– Might need to be split into triangles again

• Polygons must remain closed after clipping

Line Clipping
• Definition of clipping

– Cut off parts of objects which lie outside/inside of a defined region

– Often clip against viewport (2D) or canonical view-volume (3D)

• Let´s focus first on lines only

𝒑𝒃
′

𝒑𝒆
′

𝒑𝒃

𝒑𝒆

Brute-Force Method
• Brute-force line clipping at the viewport

– If both end points 𝑝𝑏 and 𝑝𝑒 are inside viewport

• Accept the whole line

– Otherwise, clip the line at each edge

• pintersection = 𝑝𝑏 + 𝑡𝑙𝑖𝑛𝑒 𝑝𝑒 − 𝑝𝑏 = 𝑒𝑏 + 𝑡𝑒𝑑𝑔𝑒(𝑒𝑒 − 𝑒𝑏)

• Solve for 𝑡𝑙𝑖𝑛𝑒 and 𝑡𝑒𝑑𝑔𝑒
– Intersection within segment if both 0 ≤ 𝑡𝑙𝑖𝑛𝑒, 𝑡𝑒𝑑𝑔𝑒 ≤ 1

• Replace suitable end points for the line by the intersection point

– Unnecessarily tests many cases that are irrelevant

𝒑𝒃 𝒆𝒃

𝒆𝒆
𝒑𝒆

Cohen-Sutherland (1974)
• Advantage: divide and conquer

– Efficient trivial accept and trivial reject

– Non-trivial case: divide and test

• Outcodes of points
– Bit encoding (outcode, OC)

• Each viewport edge defines a half space

• Set bit if vertex is outside w.r.t. that edge

• Trivial cases
– Trivial accept: both are in viewport

• (OC(pb) OR OC(pe)) == 0

– Trivial reject: both lie outside w.r.t. at least one common edge

• (OC(pb) AND OC(pe))  0

– Line has to be clipped to all edges where XOR bits are set, i.e.
the points lies on different sides of that edge

• OC(pb) XOR OC(pe)

0000

1000 1010

0010

011001000101

0001

1001

Bit order: top, bottom, right, left

Viewport (xmin, ymin, xmax, ymax)

Cohen-Sutherland
• Clipping of line (p1, p2)

oc1 = OC(p1); oc2 = OC(p2); edge = 0;

do {

if ((oc1 AND oc2) != 0) // trivial reject of remaining segment

return REJECT;

else if ((oc1 OR oc2) == 0) // trivial accept of remaining segment

return (ACCEPT, p1, p2);

if ((oc1 XOR oc2)[edge]) {

if (oc1[edge]) // p1 outside

{p1 = cut(p1, p2, edge); oc1 = OC(p1);}

else // p2 outside

{p2 = cut(p1, p2, edge); oc2 = OC(p2);}

}

} while (++edge < 4); // Not the most efficient solution

return ((oc1 OR oc2) == 0) ? (ACCEPT, p1, p2) : REJECT;

• Intersection calculation for x = xmin

1010

0101

1000

0001

Cyrus-Beck (1978)
• Parametric line-clipping algorithm

– Only convex polygons: max 2 intersection points

– Use edge orientation

• Idea: clipping against polygons
– Clip line p = 𝑝𝑏 + 𝑡𝑖(𝑝𝑒 − 𝑝𝑏)with each edge

– Intersection points sorted by parameter t i

– Select

• tin: entry point ((𝑝𝑒 − 𝑝𝑏) · 𝑁𝑖 < 0) with largest ti

• tout: exit point ((𝑝𝑒 − 𝑝𝑏) · 𝑁𝑖 > 0) with smallest ti
– If tout < tin, line lies completely outside (akin to ray-box intersect.)

• Intersection calculation

pepb

pedge Ni

p

Ni

pb

pe

pb

pe

tin

tout

tout

tin

Liang-Barsky (1984)
• Cyrus-Beck for axis-aligned rectangles

– Using window-edge coordinates
(with respect to an edge T)

• Example: top (y = ymax)

– Window-edge coordinate (WEC): decision function for an edge

• Directed distance to edge

– Only sign matters, similar to Cohen-Sutherland opcode

• Sign of the dot product determines whether the point is in or out

• Normalization unimportant

𝑊𝐸𝐶𝑇(𝑝) = (𝑝 − 𝑝𝑇) ⋅ 𝑁𝑇

NT

x

y

p
e

p
b

pT

Line Clipping - Summary
• Cohen-Sutherland, Cyrus-Beck, and Liang-Barsky

algorithms readily extend to 3D

• Cohen-Sutherland algorithm
+ Efficient when majority of lines can be trivially accepted / rejected

• Very large clip rectangles: almost all lines inside

• Very small clip rectangles: almost all lines outside

– Repeated clipping for remaining lines

– Testing for 2D/3D point coordinates

• Cyrus-Beck (Liang-Barsky) algorithms
+ Efficient when many lines must be clipped

+ Testing for 1D parameter values

– Testing intersections always for all clipping edges (in the Liang-
Barsky trivial rejection testing possible)

Polygon Clipping
• Extended version of line clipping

– Condition: polygons have to remain closed

• Filling, hatching, shading, ...

Sutherland-Hodgeman (1974)
• Idea

– Iterative clipping against each edge in sequence

– Four different local operations based on sides of pi-1 and pi

pi

pi-1

inside outside

pi

inside outside

pi

inside outside

pi

inside outside

pi-1

pi-1 pi-1

output: pi output: p output: -

p

p

1st output: p
2nd output: pi

Enhancements
• Recursive polygon clipping

– Pipelined Sutherland-Hodgeman

• Problems
– Degenerated polygons/edges

• Elimination by post-processing, if necessary

p0, p1, ... p0, p1, ...Top Bottom Left Right

Other Clipping Algorithms
• Weiler & Atherton (´77)

– Arbitrary concave polygons with holes against each other

• Vatti (´92)
– Also with self-overlap

• Greiner & Hormann (TOG ´98)
– Simpler and faster as Vatti

– Also supports Boolean operations

– Idea:

• Odd winding number rule

– Intersection with the polygon leads to a winding number 1

• Walk along both polygons

• Alternate winding number value

• Mark point of entry and point of exit

• Combine results

Non-zero WN: in
Even WN: out

Greiner & Hormann

A in B B in A (A in B) U (B in A)

3D Clipping agst. View Volume
• Requirements

– Avoid unnecessary rasterization

– Avoid overflow on transformation at fixed point!

• Clipping against viewing frustum
– Enhanced Cohen-Sutherland with 6-bit outcode

– After perspective division

• -1 < y < 1

• -1 < x < 1

• -1 < z < 0

– Clip against side planes of the canonical viewing frustum

– Works analogously with Liang-Barsky or Sutherland-Hodgeman

3D Clipping agst. View Volume
• Clipping in homogeneous coordinates

– Use canonical view frustum, but avoid costly division by W

– Inside test with a linear distance function (WEC)

• Left: X / W > -1 ➔ W + X = WECL(p) > 0

• Top: Y / W < 1 ➔ W – Y = WECT(p) > 0

• Back: Z / W > -1 ➔ W + Z = WECB(p) > 0

• …

– Intersection point calculation (before homogenizing)

• Test: WECL(pb) > 0 and WECL(pe) < 0

• Calculation:

𝑊𝐸𝐶 𝑝𝑏 + 𝑡 𝑝𝑒 − 𝑝𝑏 = 0

𝑊𝑏 + 𝑡 𝑊𝑒 −𝑊𝑏 + 𝑋𝑏 + 𝑡 𝑋𝑒 − 𝑋𝑏 = 0

𝑡 =
𝑊𝑏 + 𝑋𝑏

(𝑊𝑏+𝑋𝑏)− (𝑊𝑒 + 𝑋𝑒)
=

𝑊𝐸𝐶𝐿(𝑝𝑏)

𝑊𝐸𝐶𝐿 𝑝𝑏 −𝑊𝐸𝐶𝐿(𝑝𝑒)

Problems with Homogen. Coord.
• Negative w

– Points with w < 0 or lines with wb < 0 and we < 0

• Negate and continue

– Lines with wb · we < 0 (NURBS)

• Line moves through infinity

– External „line“

• Clipping two times

– Original line

– Negated line

• Generates up to two segments

w

x

pb

pe

-pe

-pb

W=1

Practical Implementations
• Combining clipping and scissoring

– Clipping is expensive and should be avoided

• Intersection calculation

• Variable number of new points, new triangles

– Enlargement of clipping region

• (Much) larger than viewport, but

• Still avoiding overflow due to fixed-point representation

– Result

• Less clipping

• Applications should avoid drawing
objects that are outside of
the viewport/viewing frustum

• Objects that are still partially
outside will be implicitly clipped
during rasterization

• Slight penalty because they will still be
processed (triangle setup)

Clipping region

Viewport

