

Probability: Theory and practice

Philipp Slusallek Karol Myszkowski Gurprit Singh

Realistic Image Synthesis SS2018

Administrative updates

- Please register for the exams (in HISPOS for Computer Science).
- Withdrawal deadline is **one week** before the main exam (or re-exam). \bullet
- For Seminars, withdrawal is allowed within three weeks after topic assignment

• σ - algebra and measure

Realistic Image Synthesis SS2018

• σ - algebra and measure

Random Variables

Realistic Image Synthesis SS2018

- σ -algebra and measure
- Random Variables
- Probability distribution functions (PDFs and PMFs)

- σ -algebra and measure
- Random Variables
- Probability distribution functions (PDFs and PMFs)
- Conditional and Marginal PDFs

- σ -algebra and measure
- Random Variables
- Probability distribution functions (PDFs and PMFs)
- Conditional and Marginal PDFs
- Expected value and Variance of a random variable

Motivation: Ray Tracing

Realistic Image Synthesis SS2018

Image Plane

	_	
_		

Image Plane

Direct Illumination

UNIVERSITÄT DES SAARLANDES

Realistic Image Synthesis SS2018

4 spp

Direct Illumination

UNIVERSITÄT DES SAARLANDES

Image rendered using PBRT

Direct and Indirect Illumination

UNIVERSITÄT DES SAARLANDES

4096 spp

Image rendered using PBRT

	_	
_		

	_	
_		

	_	
_		

	_	
_		

Direct and Indirect Illumination

UNIVERSITÄT DES SAARLANDES

4 spp

Image rendered using PBRT

How can we analyze the noise present in the images ?

Probability Theory and/or Number Theory

Probability Theory

- Discrete Probability Space
- Continuous Probability Space

18

• Finite outcomes: **discrete** random experiment

Rolling a fair dice

- Finite outcomes: **discrete** random experiment
- Can ask the outcome is a number: 1 or 6

Rolling a fair dice

- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Finite outcomes: discrete random experiment
- Can ask the outcome is a number: 1 or 6
- Can ask the outcome is a subset, e.g. all prime numbers: $\{2, 3, 5\}$

Rolling a fair dice

Realistic Image Synthesis SS2018

Rolling a fair dice

• **R1**: Apart from elementary values, the focus lies on subsets of Ω

- positive real value

Rolling a fair dice

• **R1**: Apart from elementary values, the focus lies on subsets of Ω

• **R2**: A probability assigns each element or each subset of Ω a

- positive real value

The first requirement leads to the concept of σ -algebra

Rolling a fair dice

• **R1**: Apart from elementary values, the focus lies on subsets of Ω

• **R2**: A probability assigns each element or each subset of Ω a

- **R1**: Apart from elementary values, the focus lies on subsets of Ω
- **R2**: A probability assigns each element or each subset of Ω a positive real value

Rolling a fair dice

The first requirement leads to the concept of σ -algebra The second to the mathematical construct of a measure

1

Realistic Image Synthesis SS2018

Realistic Image Synthesis SS2018

• Uncountably infinite outcomes: **continuous** random experiment

Realistic Image Synthesis SS2018

• Uncountably infinite outcomes: **continuous** random experiment

• Does not make sense to ask for one number as output, e.g. 0.245

21

• Uncountably infinite outcomes: **continuous** random experiment

• Does not make sense to ask for one number as output, e.g. 0.245

• We need to ask for the probability of a region, e.g. [0.2,0.4] or [0.36,0.89]

• **R1**: As in discrete case, focus lies on subsets of Ω , also called events

- **R1**: As in discrete case, focus lies on subsets of Ω , also called events
- **R2**: A probability assigns each subset of Ω a positive real value.

- **R1**: As in discrete case, focus lies on subsets of Ω , also called events
- **R2**: A probability assigns each subset of Ω a positive real value.

The first requirement leads to the concept of Borel σ -algebra

- **R1**: As in discrete case, focus lies on subsets of Ω , also called events
- **R2**: A probability assigns each subset of Ω a positive real value.

The first requirement leads to the concept of Borel σ -algebra

- The second to the mathematical construct of a Lebesgue measure

Mathematical construct used in probability and measure theory

- Mathematical construct used in probability and measure theory
 - 1. Take on the role of system of events in probability theory

- Mathematical construct used in probability and measure theory
 - 1. Take on the role of system of events in probability theory
- Simply spoken: Collection of subsets of a given set Ω

- Mathematical construct used in probability and measure theory
 - Take on the role of system of events in probability theory 1.
- Simply spoken: Collection of subsets of a given set ()
 - A. A non-empty collection of subsets of Ω that is **closed** under the set theoretical operations of: countable unions, countable intersections, and complement

• For discrete set Ω :

• For discrete set Ω :

The sigma-algebra corresponds to the power set of omega (set of all 1. subsets)

• For discrete set Ω :

The sigma-algebra corresponds to the power set of omega (set of all 1. subsets)

$\Omega = \{0, 1\}$ $\Sigma = \{\{\phi\}, \{0\}, \{1\}, \{0, 1\}\}\$

• For discrete set Ω :

The sigma-algebra corresponds to the power set of omega (set of all 1. subsets)

$\Omega = \{0, 1\}$ $\Sigma = \{\{\phi\}, \{0\}, \{1\}, \{0, 1\}\}\$

$$\Omega = \{a, b, c, d\}$$

$$\Sigma = \{\{\phi\}, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$$

• For continuous set Ω :

- For continuous set Ω :
- countable intersections, and complement of open sets

A. The associated sigma algebras are the Borel sets over Ω , i.e., the collection of all open sets over omega that can be generated via countable unions,

- For continuous set Ω :
- countable intersections, and complement of open sets

 $I = [p, q), p, q \in \mathbb{R}$ Fixed half-interval

A. The associated sigma algebras are the Borel sets over Ω , i.e., the collection of all open sets over omega that can be generated via countable unions,

Realistic Image Synthesis SS2018

- For continuous set Ω :
- A. The associated sigma algebras are the Borel sets over Ω , i.e., the collection of all open sets over omega that can be generated via countable unions, countable intersections, and complement of open sets
 - $I = [p, q), p, q \in \mathbb{R}$ Fixed half-interval
 - $\mathbb{T} = [\alpha, \beta] \subseteq [p, q]$ Collection of all half-intervals

- For continuous set Ω :
- A. The associated sigma algebras are the Borel sets over Ω , i.e., the collection of all open sets over omega that can be generated via countable unions, countable intersections, and complement of open sets
 - $I = [p, q), p, q \in \mathbb{R}$ Fixed half-interval
 - $\mathbb{T} = [\alpha, \beta] \subseteq [p, q]$ Collection of all half-intervals

nor the difference of two half-intervals is a half-interval.

Here, \mathbb{T} is not a σ -algebra because, generally speaking, neither the union

It is the mathematical construct that allows defining a measure

Realistic Image Synthesis SS2018

Measure

• In probability theory, it plays the role of a probability distribution

Measure

- In probability theory, it plays the role of a probability distribution
- subset of a sigma-algebra a non-negative real number.

A real-valued set function defined on a sigma-algebra that assigns each

Measure

- In probability theory, it plays the role of a probability distribution
- subset of a sigma-algebra a non-negative real number.
- sets is equal to the sum of the measures of the individual sets

• A real-valued set function defined on a sigma-algebra that assigns each

• A sigma-additive set function: i.e., the measure of the union of disjoint

Lebesgue Measure

 Standard way of assigning measure to subsets of n-dimensional Euclidean space.

Lebesgue Measure

- Standard way of assigning measure to subsets of n-dimensional Euclidean space.
- volume, respectively.

• For n = 1,2 or 3, it coincides with the standard measure of length, area or

33

• Central concept in probability theory

34

- Central concept in probability theory
- one

• Enables to construct a simpler probability space from a rather complex

- Central concept in probability theory
- one
- Correspond to a measurable function defined on a σ -algebra that assigns each element to a real number

• Enables to construct a simpler probability space from a rather complex

• A random variable X is a value chosen by some random process

- A random variable X is a value chosen by some random process
- Random variables are always drawn from a domain: discrete (e.g., a fixed set of probabilities) or continuous (e.g., real numbers)

Realistic Image Synthesis SS2018

- A random variable X is a value chosen by some random process
- Random variables are always drawn from a domain: discrete (e.g., a fixed set of probabilities) or continuous (e.g., real numbers)
- Applying a function f to a random variable X results in a new random variable Y=f(X)

Discrete Probability Space

Realistic Image Synthesis SS2018

Discrete Random Variable

- Random variable (RV): • $X: \Omega \to E$
- **Probabilities:** •

 $\{p_1, p_2, \ldots, p_n\}$ N $\sum p_i = 1$

$$\Omega = \{x_1, x_2, \ldots, x_n\}$$

37

- Example: Rolling a Die • $x_1 = 1, x_2 = 2, x_3 = 3, x_4 = 4, x_5 = 5, x_6 = 6$
- Probability of each event: •

 $p_i = 1/6$ for i = 1, ..., 6

38

- Example: Rolling a Die • $x_1 = 1, x_2 = 2, x_3 = 3,$
- Probability of each event: •

 $p_i = 1/6$ for i = 1, ..., 6

$$x_4 = 4, x_5 = 5, x_6 = 6$$

$$P(X=i) = \frac{1}{6}$$

38

Realistic Image Synthesis SS2018

 $P(2 \le X \le 4) = \sum^{4} P(X = i)$ i=2

39

Discrete Random Variable

$P(2 \le X \le 4) =$

$$=\sum_{i=2}^{4} P(X=i)$$

$$=\sum_{i=2}^{4}\frac{1}{6}=\frac{1}{2}$$

39

RV is exactly equal to some value.

Probability mass function

• PMF is a function that gives the probability that a discrete

Realistic Image Synthesis SS2018

- RV is exactly equal to some value.
- which is for continuous RVs.

Probability mass function

• PMF is a function that gives the probability that a discrete

• PMF is different from PDF (probability density function)

Constant PMF

Probability mass function

Non-uniform PMF

Continuous Probability Space

Realistic Image Synthesis SS2018

random variables

Realistic Image Synthesis SS2018

• In rendering, discrete random variables are less common than continuous

- random variables
- domains (e.g. real numbers or directions on the unit sphere)

• In rendering, discrete random variables are less common than continuous

Continuous random variables take on values that ranges of continuous

- random variables
- domains (e.g. real numbers or directions on the unit sphere)
- variable, which we write as ξ

• In rendering, discrete random variables are less common than continuous

Continuous random variables take on values that ranges of continuous

• A particularly important random variable is the canonical uniform random

Realistic Image Synthesis SS2018

Realistic Image Synthesis SS2018

 $\xi \in [0,1)$

and map to a discrete random variable, choosing X_i if:

• We can take a continuous, uniformly distributed random variable $\xi \in [0, 1)$

and map to a discrete random variable, choosing X_i if:

• We can take a continuous, uniformly distributed random variable $\xi \in [0, 1)$

Questions ?

Image rendered using PBRT

Questions ?

Image rendered using PBRT

Image rendered using PBRT

Here, the probability is relative to the total power

Realistic Image Synthesis SS2018

• For lighting application, we might want to define probability of sampling illumination from each light source in the scene based on its power Φ_i

 $p_i = \frac{\Phi_i}{\sum_j \Phi_j}$

Realistic Image Synthesis SS2018

value 2 - x

• Consider a continuous RV that ranges over real numbers: [0, 2) , where the probability of taking on any particular value x is **proportional** to the

Realistic Image Synthesis SS2018

- value 2-x
- it is to take around 1, and so forth.

• Consider a continuous RV that ranges over real numbers: [0, 2), where the probability of taking on any particular value x is **proportional** to the

• It is twice as likely for this random variable to take on a value around 0 as

the relative probability of a RV taking on a particular value.

• The probability density function (PDF) formalizes this idea: it describes

- the relative probability of a RV taking on a particular value.
- PDF must be integrated over an interval to yield a probability

• The probability density function (PDF) formalizes this idea: it describes

• Unlike PMF, the values of the PDFs are not the probabilities as such: a

For uniform random variables: $p(x) = \begin{cases} 1 & x \in [0, 1) \\ 0 & \text{otherwise} \end{cases}$

For non-uniform random variables:

p(x) could be any function

Realistic Image Synthesis SS2018

Uniform distribution

constant pdf

Realistic Image Synthesis SS2018

Non-uniform distribution

54

Uniform distribution

Non-uniform distribution

54

Realistic Image Synthesis SS2018

Uniform distribution

Non-uniform distribution

Uniform distribution

Non-uniform distribution

Realistic Image Synthesis SS2018

Some properties of PDFs:

Realistic Image Synthesis SS2018

p(x) > 0

 $\int_{-\infty}^{\infty} p(x)dx = 1$

 $\int_{a}^{b} p(x)dx = 1 \quad x \in [a, b)$

Realistic Image Synthesis SS2018

 $\int_{a}^{b} p(x)dx = 1 \quad x \in [a, b)$

58

Realistic Image Synthesis SS2018

$$\int_{a}^{b} p(x)dx = 1 \quad x \in [a, b)$$
$$\int_{a}^{b} C \, dx = 1$$

58

Realistic Image Synthesis SS2018

$$\int_{a}^{b} p(x)dx = 1 \quad x \in [a, b)$$
$$\int_{a}^{b} C \, dx = 1$$
$$C \int_{a}^{b} dx = 1$$

58

Realistic Image Synthesis SS2018

$$\int_{a}^{b} p(x)dx = 1 \quad x \in [a, b)$$
$$\int_{a}^{b} C \, dx = 1$$
$$C \int_{a}^{b} dx = 1$$
$$C(b-a) = 1$$

58

Realistic Image Synthesis SS2018

$$\int_{a}^{b} p(x)dx = 1 \qquad x \in [a, b]$$
$$\int_{a}^{b} C \, dx = 1$$
$$C \int_{a}^{b} dx = 1$$
$$C(b-a) = 1$$
$$C = \frac{1}{a}$$

Realistic Image Synthesis SS2018

$$\int_{a}^{b} p(x)dx = 1 \quad x \in [a, b)$$
$$\int_{a}^{b} C \, dx = 1$$

$$C\int_{a}^{b} dx = 1$$

$$C(b-a) = 1$$

$$C = \frac{1}{b-a}$$

$$p(x) = \frac{1}{b-a}$$

Realistic Image Synthesis SS2018

• The PDF p(x) is the derivative of the random variable's CDF:

• The PDF p(x) is the derivative of the random variable's CDF:

$$p(x) = \frac{dP(x)}{dx}$$

 $P(\boldsymbol{x})$: cumulative distribution function (CDF) , also called cumulative density function

Realistic Image Synthesis SS2018

• The PDF p(x) is the derivative of the random variable's CDF:

$$p(x) = \frac{dP(x)}{dx}$$

 $P(\boldsymbol{x})$: cumulative distribution function (CDF) , also called cumulative density function

$$P(x) = \int_{-\infty}^{x} p(x) dx$$

Cumulative distribution function $p(x) = \begin{cases} 1 & x \in [0, 1) \\ 0 & \text{otherwise} \end{cases}$ $P(x) = \int_{-\infty}^{\infty} p(x) dx$ constant pdf

Realistic Image Synthesis SS2018

Cumulative distribution function $p(x) = \begin{cases} 1 & x \in [0, 1) \\ 0 & \text{otherwise} \end{cases}$ $P(x) = \int_{-\infty}^{\infty} p(x) dx$ constant pdf

Realistic Image Synthesis SS2018

64

Realistic Image Synthesis SS2018

Cumulative distribution function

Realistic Image Synthesis SS2018

Questions ?

Image rendered using PBRT

Questions ?

Image rendered using PBRT

Probability: Integral of PDF

the probability that a RV lies inside that interval:

• Given the arbitrary interval [a, b] in the domain, integrating the PDF gives

Probability: Integral of PDF

the probability that a RV lies inside that interval:

 $P(x \in [a,$

• Given the arbitrary interval [a, b] in the domain, integrating the PDF gives

$$b]) = \int_{a}^{b} p(x) dx$$

$$p(x)$$

$$a b$$

Examples: Sampling PDFs

Realistic Image Synthesis SS2018

Random 2D

0

0

Realistic Image Synthesis SS2018

Sampling a unit domain with uniform random samples

Realistic Image Synthesis SS2018

Random 1D

Realistic Image Synthesis SS2018

Random 1D

Sampling a unit domain with uniform random samples

Realistic Image Synthesis SS2018

Random 1D

Sampling a unit domain with uniform random samples

Constant Sampling PDFs Random 1D

Realistic Image Synthesis SS2018

$$p(x) = \begin{cases} C & x \in [0, 1) \\ 0 & \text{otherwise} \end{cases}$$

Sampling a unit domain with uniform random samples

Realistic Image Synthesis SS2018

Realistic Image Synthesis SS2018

Realistic Image Synthesis SS2018

Realistic Image Synthesis SS2018

Realistic Image Synthesis SS2018

Probability density of generating a sample in an i-th stratum is given by:

 $p(x_i) = ???$

Sampling each stratum with uniform random samples

Realistic Image Synthesis SS2018

Probability density of generating a sample in an i-th stratum is given by:

$$p(x_i) = \begin{cases} N & x \in \left[\frac{i}{N}, \frac{i+1}{N}\right) \\ 0 & \text{otherwise} \end{cases}$$

Sampling each stratum with uniform random samples

Jittered 1D

First, we divide the domain into equal strata.

Jittered 1D

- First, we divide the domain into equal strata.
- Second, we sample the domain.

Jittered 1D

- First, we divide the domain into equal strata.
- Second, we sample the domain.
- This implies that two samples are correlated to each other.

Jittered 1D

For two different strata i and j, what is the joint PDF for jittered sampling ? $p(x_i, x_j) = ???$

- First, we divide the domain into equal strata.
- Second, we sample the domain.
- This implies that two samples are correlated to each other.

Conditional and Marginal PDFs

Realistic Image Synthesis SS2018

For two random variables X_1 and X_2 , the joint PDF $p(x_1, x_2)$ is given by:

For two random variables X_1 and X_2 , the joint PDF $p(x_1, x_2)$ is given by: $p(x_1, x_2) = p(x_2|x_1)p(x_1)$

where, $X_1 = x_1$ $p(x_2|x_1)$: conditional density function $X_2 = x_2$ $p(x_1)$: marginal density function

- For two random variables X_1 and X_2 , the joint PDF $p(x_1, x_2)$ is given by: $p(x_1, x_2) = p(x_2|x_1)p(x_1)$

$$p(x_1, x_2) =$$

where,

$$X_1 = x_1$$
 $p(x_2|x_1)$
 $X_2 = x_2$
 $p(x_1)$

- For two random variables X_1 and X_2 , the joint PDF $p(x_1, x_2)$ is given by: $= p(x_2|x_1)p(x_1)$
 - : conditional density function
 - : marginal density function

$$p(x_1, x_2) =$$

- For two random variables X_1 and X_2 , the joint PDF $p(x_1, x_2)$ is given by: $= p(x_1|x_2)p(x_2)$
 - $p(x_1|x_2)$: conditional density function
 - : marginal density function

Marginal PDF

 $p(x_2) =$

We integrate out one of the variable.

 $p(x_1) = \int_{\mathbb{R}} p(x_1, x_2) dx_2$

$$\int_{\mathbb{R}} p(x_1, x_2) dx_1$$

Conditional PDF

 $p(x_1|x_2) =$

 $p(x_2|x_1) =$

The conditional density function is the density function for x_i given that some particular x_j has been chosen.

$$= \frac{p(x_1, x_2)}{p(x_2)}$$

$$=\frac{p(x_1,x_2)}{p(x_1)}$$

Conditional PDF

If both x_1 and x_2 are independent then:

 $p(x_1|x_2) = p(x_1)$

 $p(x_2|x_1) = p(x_2)$

Realistic Image Synthesis SS2018

Conditional PDF

If both x_1 and x_2 are independent then:

 $p(x_1|x_2) = p(x_1)$

 $p(x_2|x_1) = p(x_2)$

That gives:

 $p(x_1, x_2) = p(x_1)p(x_2)$

Realistic Image Synthesis SS2018

Joint PDF of Jittered 1D Sampling

For two different strata i and j, what is the joint PDF for jittered sampling ?

p(a

$$x_i, x_j) = ???$$

Realistic Image Synthesis SS2018

Joint PDF of Jittered 1D Sampling

Realistic Image Synthesis SS2018

 $p(x_1, x_2) = p(x_1 | x_2) p(x_2)$

Joint PDF of Jittered 1D Sampling

 $p(x_1, x_2) = p(x_1)p(x_2)$

 $p(x_1, x_2) = p(x_1|x_2)p(x_2)$

Joint PDF of Jittered 1D Sampling

Realistic Image Synthesis SS2018

$p(x_i, x_j) = \begin{cases} p(x_i)p(x_j) & i \neq j \\ 0 & otherwise \end{cases}$

Joint PDF of Jittered 1D Sampling

 $p(x_i, x_j) = \begin{cases} N^{:} \\ 0 \end{cases}$

$$x_i)p(x_j) \quad i \neq j$$

otherwise

$$i^{2}$$
 $i \neq j$
otherwise

Since,
$$p(x_i) = N$$

Image rendered using PBRT

Image rendered using PBRT

Realistic Image Synthesis SS2018

• Expected value: average value of the variable

• example: rolling a die

E[X] =

95

• Expected value: average value of the variable

• example: rolling a die

$$E[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6}$$

96

• Properties:

UNIVERSITÄT DES SAARLANDES O,O

E[X+Y] = E[X] + E[Y]

97

• Properties:

E[X+Y] = E[X] + E[Y]E[X+c] = E[X] + c

• Properties:

E[X+Y] = E[X] + E[Y]E[X+c] = E[X] + cE[cX] = cE[X]

To estimate the expected value of a variable •

100

- To estimate the expected value of a variable •
 - choose a set of random *values* based on the probability

- To estimate the expected value of a variable •
 - choose a set of random values based on the probability
 - average their results

- To estimate the expected value of a variable •
 - •
 - average their results

choose a set of random *values* based on the probability

100

- To estimate the expected value of a variable •
 - •
 - average their results

example: rolling a die \bullet

choose a set of random *values* based on the probability

100

- To estimate the expected value of a variable •
 - choose a set of random *values* based on the probability
 - average their results

- example: rolling a die lacksquare
 - roll 3 times: $\{3, 1, 6\} \rightarrow E[\mathbf{x}] \approx$

100

- To estimate the expected value of a variable •
 - choose a set of random *values* based on the probability
 - average their results

- example: rolling a die lacksquare
 - roll 3 times: $\{3, 1, 6\} \rightarrow E[\mathbf{x}] \approx$

100

- To estimate the expected value of a variable •
 - choose a set of random *values* based on the probability
 - average their results

- example: rolling a die ullet
 - roll 3 times: $\{3, 1, 6\} \rightarrow E[x] \approx (3 + 1 + 6)/3 = 3.33$

- To estimate the expected value of a variable •
 - choose a set of random *values* based on the probability
 - average their results

- example: rolling a die ullet
 - roll 3 times: $\{3, 1, 6\} \rightarrow E[x] \approx (3 + 1 + 6)/3 = 3.33$

- To estimate the expected value of a variable •
 - choose a set of random *values* based on the probability
 - average their results

- example: rolling a die ullet
 - roll 3 times: $\{3, 1, 6\} \rightarrow E$
 - roll 9 times: $\{3, 1, 6, 2, 5, 3\}$

$$[x] \approx (3 + 1 + 6)/3 = 3.33$$

3, 4, 6, 2} $\rightarrow E[x]$

- To estimate the expected value of a variable •
 - choose a set of random *values* based on the probability
 - average their results

- example: rolling a die ullet
 - roll 3 times: $\{3, 1, 6\} \rightarrow E$
 - roll 9 times: $\{3, 1, 6, 2, 5, 3\}$

$$[x] \approx (3 + 1 + 6)/3 = 3.33$$

3, 4, 6, 2} $\rightarrow E[x]$

- To estimate the expected value of a variable •
 - choose a set of random *values* based on the probability
 - average their results

- example: rolling a die \bullet
 - roll 3 times: $\{3, 1, 6\} \rightarrow E[x] \approx (3 + 1 + 6)/3 = 3.33$
 - roll 9 times: $\{3, 1, 6, 2, 5, 3, 4, 6, 2\} \rightarrow E[x] \approx 3.51$

Law of large numbers

- By taking *infinitely* many samples, the error between the • estimate and the expected value is *statistically* zero
 - the estimate will converge to the right value

$$= \lim_{N o \infty} rac{1}{N} \sum_{i=1}^N x_i igg] = 1$$

Realistic Image Synthesis SS2018

Variance

- Variance: how much different from the average
 - $\sigma^2[X] = E[(X E[X])^2]$

108

- Variance: how much different from the average
 - $\sigma^2[X] = E[(X E[X])^2]$ $= E[X^{2} + E[X]^{2} - 2XE[X]]$

109

- Variance: how much different from the average
 - $\sigma^2[X] = E[(X E[X])^2]$ $= E[X^{2} + E[X]^{2} - 2XE[X]]$
 - $= E[X^{2}] + E[E[X]^{2}] 2E[X]E[E[X]]]$

- Variance: how much different from the average
 - $\sigma^2[X] = E[(X E[X])^2]$ $= E[X^{2} + E[X]^{2} - 2XE[X]]$ $= E[X^{2}] + E[E[X]^{2}] - 2E[X]E[E[X]]]$

 - $= E[X^{2}] + E[X]^{2} 2E[X]^{2}$

- Variance: how much different from the average
 - $\sigma^2[X] = E[(X E[X])^2]$ $= E[X^{2} + E[X]^{2} - 2XE[X]]$ $= E[X^{2}] + E[E[X]^{2}] - 2E[X]E[E[X]]]$ $= E[X^{2}] + E[X]^{2} - 2E[X]^{2}$ $= E[X^2] - E[X]^2$

- Variance: how much different from the average
 - $\sigma^2[X] = E[(X E[X])^2]$ $= E[X^{2} + E[X]^{2} - 2XE[X]]$ $= E[X^{2}] + E[E[X]^{2}] - 2E[X]E[E[X]]]$ $= E[X^{2}] + E[X]^{2} - 2E[X]^{2}$ $= E[X^2] - E[X]^2$

- Variance: how much different from the average
 - $\sigma^2[X] = E[(X E[X])^2]$

 - $= E[X^2] E[X]^2$

 $\sigma^2[X] = E[X]$

$= E[X^{2} + E[X]^{2} - 2XE[X]]$ $= E[X^{2}] + E[E[X]^{2}] - 2E[X]E[E[X]]]$ $= E[X^{2}] + E[X]^{2} - 2E[X]^{2}$

$$X^2] - E[X]^2$$

Realistic Image Synthesis SS2018

- example: Rolling a die
 - variance:

 $\sigma^2[X] = \ldots =$

Realistic Image Synthesis SS2018

- example: Rolling a die
 - variance:

$$\sigma^{2}[X] = E[X^{2}] - E[X]^{2}$$

 $\sigma^2[X] = \ldots =$

114

Realistic Image Synthesis SS2018

- example: Rolling a die
 - variance:

$$\sigma^{2}[X] = E[X^{2}] - E[X]^{2}$$

$$\sigma^{2}[X] = \dots =$$

$$E[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6}$$

$$+4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

- example: Rolling a die
 - variance:

$$\sigma^{2}[X] = E[X^{2}] - E[X]^{2}$$

 $\sigma^2[X] = \ldots = 2.917$

Monte Carlo Integration

$I = \int_D f(x) \, \mathrm{d}x$

Realistic Image Synthesis SS2018

Slide after Wojciech Jarosz

$I = \int_{D} f(x) \, \mathrm{d}x$

Slide after Wojciech Jarosz

$I = \int_{D} f(x) \, \mathrm{d}x$

Slide after Wojciech Jarosz

Image rendered using PBRT

