Probability: Theory and practice

Philipp Slusallek Karol Myszkowski Gurprit Singh

Administrative updates

- Please register for the exams (in HISPOS for Computer Science).
- Withdrawal deadline is one week before the main exam (or re-exam).
- For Seminars, withdrawal is allowed within three weeks after topic assignment

A la Carte

- σ-algebra and measure

A la Carte

- σ - algebra and measure
- Random Variables

A la Carte

- σ - algebra and measure
- Random Variables
- Probability distribution functions (PDFs and PMFs)

A la Carte

- σ - algebra and measure
- Random Variables
- Probability distribution functions (PDFs and PMFs)
- Conditional and Marginal PDFs

A la Carte

- σ - algebra and measure
- Random Variables
- Probability distribution functions (PDFs and PMFs)
- Conditional and Marginal PDFs
- Expected value and Variance of a random variable

Motivation: Ray Tracing

Ray Tracing

Ray Tracing

Path Tracing

Path Tracing

Path Tracing

Path Tracing

How can we analyze the noise present in the images ?

Probability Theory and/or Number Theory

Probability Theory

- Discrete Probability Space
- Continuous Probability Space

Rolling a fair dice

$$
\Omega=\{1,2,3,4,5,6\}
$$

- Finite outcomes: discrete random experiment

Rolling a fair dice

$$
\Omega=\{1,2,3,4,5,6\}
$$

- Finite outcomes: discrete random experiment
- Can ask the outcome is a number: 1 or 6

Rolling a fair dice

$$
\Omega=\{1,2,3,4,5,6\}
$$

- Finite outcomes: discrete random experiment
- Can ask the outcome is a number: 1 or 6
- Can ask the outcome is a subset, e.g. all prime numbers: $\{2,3,5\}$

Rolling a fair dice

$$
\Omega=\{1,2,3,4,5,6\}
$$

- R1: Apart from elementary values, the focus lies on subsets of Ω

Rolling a fair dice

$$
\Omega=\{1,2,3,4,5,6\}
$$

- R1: Apart from elementary values, the focus lies on subsets of Ω
- R2: A probability assigns each element or each subset of Ω a positive real value

Rolling a fair dice

$$
\Omega=\{1,2,3,4,5,6\}
$$

- R1: Apart from elementary values, the focus lies on subsets of Ω
- R2: A probability assigns each element or each subset of Ω a positive real value

The first requirement leads to the concept of σ-algebra

Rolling a fair dice

$$
\Omega=\{1,2,3,4,5,6\}
$$

- R1: Apart from elementary values, the focus lies on subsets of Ω
- R2: A probability assigns each element or each subset of Ω a positive real value

The first requirement leads to the concept of σ-algebra
The second to the mathematical construct of a measure

Random number in $[0,1]$

Random number in $[0,1]$

Random number in $[0,1]$

- Uncountably infinite outcomes: continuous random experiment

Random number in $[0,1]$

- Uncountably infinite outcomes: continuous random experiment
- Does not make sense to ask for one number as output, e.g. 0.245

Random number in $[0,1]$

- Uncountably infinite outcomes: continuous random experiment
- Does not make sense to ask for one number as output, e.g. 0.245
- We need to ask for the probability of a region, e.g. [0.2,0.4] or [0.36,0.89]

Random number in $[0,1]$

- R1: As in discrete case, focus lies on subsets of Ω, also called events

Random number in $[0,1]$

- R1: As in discrete case, focus lies on subsets of Ω, also called events
- R2: A probability assigns each subset of Ω a positive real value.

Random number in $[0,1]$

- R1: As in discrete case, focus lies on subsets of Ω, also called events
- R2: A probability assigns each subset of Ω a positive real value.

The first requirement leads to the concept of Borel σ-algebra

Random number in $[0,1]$

- R1: As in discrete case, focus lies on subsets of Ω, also called events
- R2: A probability assigns each subset of Ω a positive real value.

The first requirement leads to the concept of Borel σ-algebra
The second to the mathematical construct of a Lebesgue measure

σ-Algebra

- Mathematical construct used in probability and measure theory

σ-Algebra

- Mathematical construct used in probability and measure theory

1. Take on the role of system of events in probability theory

σ-Algebra

- Mathematical construct used in probability and measure theory

1. Take on the role of system of events in probability theory

- Simply spoken: Collection of subsets of a given set Ω

σ-Algebra

- Mathematical construct used in probability and measure theory

1. Take on the role of system of events in probability theory

- Simply spoken: Collection of subsets of a given set Ω
A. A non-empty collection of subsets of Ω that is closed under the set theoretical operations of: countable unions, countable intersections, and complement

σ-Algebra

- For discrete set Ω :

σ-Algebra

- For discrete set Ω :

1. The sigma-algebra corresponds to the power set of omega (set of all subsets)

σ-Algebra

- For discrete set Ω :

1. The sigma-algebra corresponds to the power set of omega (set of all subsets)

$$
\begin{gathered}
\Omega=\{0,1\} \\
\Sigma=\{\{\phi\},\{0\},\{1\},\{0,1\}\}
\end{gathered}
$$

σ-Algebra

- For discrete set Ω :

1. The sigma-algebra corresponds to the power set of omega (set of all subsets)

$$
\begin{array}{cc}
\Omega=\{0,1\} & \Omega=\{a, b, c, d\} \\
\Sigma=\{\{\phi\},\{0\},\{1\},\{0,1\}\} & \Sigma=\{\{\phi\},\{a, b\},\{c, d\},\{a, b, c, d\}\}
\end{array}
$$

σ-Algebra

- For continuous set Ω :

σ-Algebra

- For continuous set Ω :
A. The associated sigma algebras are the Borel sets over Ω, i.e., the collection of all open sets over omega that can be generated via countable unions, countable intersections, and complement of open sets

σ-Algebra

- For continuous set Ω :
A. The associated sigma algebras are the Borel sets over Ω, i.e., the collection of all open sets over omega that can be generated via countable unions, countable intersections, and complement of open sets

$$
I=[p, q), p, q \in \mathbb{R} \quad \text { Fixed half-interval }
$$

σ-Algebra

- For continuous set Ω :
A. The associated sigma algebras are the Borel sets over Ω, i.e., the collection of all open sets over omega that can be generated via countable unions, countable intersections, and complement of open sets
$I=[p, q), p, q \in \mathbb{R} \quad$ Fixed half-interval
$\mathbb{T}=[\alpha, \beta) \subseteq[p, q) \quad$ Collection of all half-intervals

σ-Algebra

- For continuous set Ω :
A. The associated sigma algebras are the Borel sets over Ω, i.e., the collection of all open sets over omega that can be generated via countable unions, countable intersections, and complement of open sets

$$
\begin{aligned}
I & =[p, q), p, q \in \mathbb{R} \\
\mathbb{T} & =[\alpha, \beta) \subseteq[p, q)
\end{aligned} \quad \text { Collection of all half-intervals }
$$

Here, \mathbb{T} is not a σ-algebra because, generally speaking, neither the union nor the difference of two half-intervals is a half-interval.

σ-Algebra

It is the mathematical construct that allows defining a measure

Measure

- In probability theory, it plays the role of a probability distribution

Measure

- In probability theory, it plays the role of a probability distribution
- A real-valued set function defined on a sigma-algebra that assigns each subset of a sigma-algebra a non-negative real number.

Measure

- In probability theory, it plays the role of a probability distribution
- A real-valued set function defined on a sigma-algebra that assigns each subset of a sigma-algebra a non-negative real number.
- A sigma-additive set function: i.e., the measure of the union of disjoint sets is equal to the sum of the measures of the individual sets

Lebesgue Measure

- Standard way of assigning measure to subsets of n-dimensional Euclidean space.

Lebesgue Measure

- Standard way of assigning measure to subsets of n-dimensional Euclidean space.
- For $n=1,2$ or 3 , it coincides with the standard measure of length, area or volume, respectively.

Random Variable

- Central concept in probability theory

Random Variable

- Central concept in probability theory
- Enables to construct a simpler probability space from a rather complex one

Random Variable

- Central concept in probability theory
- Enables to construct a simpler probability space from a rather complex one
- Correspond to a measurable function defined on a σ-algebra that assigns each element to a real number

Random Variable

- A random variable X is a value chosen by some random process

Random Variable

- A random variable X is a value chosen by some random process
- Random variables are always drawn from a domain: discrete (e.g., a fixed set of probabilities) or continuous (e.g., real numbers)

Random Variable

- A random variable X is a value chosen by some random process
- Random variables are always drawn from a domain: discrete (e.g., a fixed set of probabilities) or continuous (e.g., real numbers)
- Applying a function f to a random variable X results in a new random variable $Y=f(X)$

Discrete Probability Space

Discrete Random Variable

- Random variable (RV):

$$
X: \Omega \rightarrow E \quad \Omega=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

- Probabilities:

$$
\begin{aligned}
& \left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \\
& \sum_{i=1}^{N} p_{i}=1
\end{aligned}
$$

Discrete Random Variable

- Example: Rolling a Die

$$
x_{1}=1, x_{2}=2, x_{3}=3, x_{4}=4, x_{5}=5, x_{6}=6
$$

- Probability of each event:

$$
p_{i}=1 / 6 \text { for } i=1, \ldots, 6
$$

Discrete Random Variable

- Example: Rolling a Die

$$
x_{1}=1, x_{2}=2, x_{3}=3, x_{4}=4, x_{5}=5, x_{6}=6
$$

- Probability of each event:

$$
p_{i}=1 / 6 \quad \text { for } i=1, \ldots, 6 \quad P(X=i)=\frac{1}{6}
$$

Discrete Random Variable

$$
P(2 \leq X \leq 4)=\sum_{i=2}^{4} P(X=i)
$$

Discrete Random Variable

$$
\begin{aligned}
P(2 \leq X \leq 4) & =\sum_{i=2}^{4} P(X=i) \\
& =\sum_{i=2}^{4} \frac{1}{6}=\frac{1}{2}
\end{aligned}
$$

Probability mass function

- PMF is a function that gives the probability that a discrete RV is exactly equal to some value.

Probability mass function

- PMF is a function that gives the probability that a discrete RV is exactly equal to some value.
- PMF is different from PDF (probability density function) which is for continuous RVs.

Probability mass function

Constant PMF

Non-uniform PMF

Continuous Probability Space

Continuous Random Variable

- In rendering, discrete random variables are less common than continuous random variables

Continuous Random Variable

- In rendering, discrete random variables are less common than continuous random variables
- Continuous random variables take on values that ranges of continuous domains (e.g. real numbers or directions on the unit sphere)

Continuous Random Variable

- In rendering, discrete random variables are less common than continuous random variables
- Continuous random variables take on values that ranges of continuous domains (e.g. real numbers or directions on the unit sphere)
- A particularly important random variable is the canonical uniform random variable, which we write as ξ

Continuous Random Variable

Continuous Random Variable

$\underset{0}{-}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O} \longrightarrow \underset{1}{\longrightarrow}$
 $\xi \in[0,1)$

Continuous Random Variable

- We can take a continuous, uniformly distributed random variable $\xi \in[0,1)$ and map to a discrete random variable, choosing X_{i} if:

Continuous Random Variable

- We can take a continuous, uniformly distributed random variable $\xi \in[0,1)$ and map to a discrete random variable, choosing X_{i} if:

$$
\sum_{j=1}^{i-1} p_{j}<\xi \leq \sum_{j=1}^{i} p_{j}
$$

$$
X_{i}=\{1,2,3,4,5,6\}
$$

Continuous Random Variable

- For lighting application, we might want to define probability of sampling illumination from each light source in the scene based on its power Φ_{i}

$$
p_{i}=\frac{\Phi_{i}}{\sum_{j} \Phi_{j}}
$$

Here, the probability is relative to the total power

Probability Density Functions

Probability density function

- Consider a continuous RV that ranges over real numbers: $[0,2)$, where the probability of taking on any particular value x is proportional to the value $2-x$

Probability density function

- Consider a continuous RV that ranges over real numbers: $[0,2)$, where the probability of taking on any particular value x is proportional to the value $2-x$
- It is twice as likely for this random variable to take on a value around 0 as it is to take around 1 , and so forth.

Probability density function

- The probability density function (PDF) formalizes this idea: it describes the relative probability of a RV taking on a particular value.

Probability density function

- The probability density function (PDF) formalizes this idea: it describes the relative probability of a RV taking on a particular value.
- Unlike PMF, the values of the PDFs are not the probabilities as such: a PDF must be integrated over an interval to yield a probability

Probability density function

For uniform random variables:

$$
p(x)= \begin{cases}1 & x \in[0,1) \\ 0 & \text { otherwise }\end{cases}
$$

For non-uniform random variables:
$p(x)$ could be any function

Probability density function

Uniform distribution
Non-uniform distribution

Probability density function

Uniform distribution
Non-uniform distribution

Probability density function

Uniform distribution
Non-uniform distribution

Probability density function

Uniform distribution

Non-uniform distribution

Probability density function

Some properties of PDFs:

$$
p(x)>0
$$

$$
\int_{-\infty}^{\infty} p(x) d x=1
$$

Probability density function

Probability density function

Probability density function

$$
\begin{gathered}
\int_{a}^{b} p(x) d x=1 \quad x \in[a, b) \\
\int_{a}^{b} C d x=1
\end{gathered}
$$

Probability density function

$$
\begin{gathered}
\int_{a}^{b} p(x) d x=1 \quad x \in[a, b) \\
\int_{a}^{b} C d x=1 \\
C \int_{a}^{b} d x=1
\end{gathered}
$$

Probability density function

$$
C \begin{array}{cc}
\\
\hline & \int_{a}^{b} p(x) d x=1 \quad x \in[a, b) \\
\text { constant pdf } \\
\hline \text { a } & \int_{a}^{b} C d x=1 \\
& C \int_{a}^{b} d x=1 \\
& C(b-a)=1
\end{array}
$$

Probability density function

$$
C \begin{array}{cc}
\substack{\text { constant pdf } \\
\cline { 1 - 3 } \\
\hline \mathrm{p}(x)=C} & \int_{a}^{b} p(x) d x=1 \quad x \in[a, b) \\
& \int_{a}^{b} C d x=1 \\
& C \int_{a}^{b} d x=1 \\
& C(b-a)=1 \\
& C=\frac{1}{b-a}
\end{array}
$$

Probability density function

$$
\begin{array}{rl}
\int_{a}^{b} p(x) d x=1 & x \in[a, b) \\
\int_{a}^{b} C d x=1 & \\
C \int_{a}^{b} d x=1 & p(x)=\frac{1}{b-a}
\end{array}
$$

$$
C(b-a)=1
$$

$$
C=\frac{1}{b-a}
$$

Cumulative distribution function

- The PDF $p(x)$ is the derivative of the random variable's CDF:

Cumulative distribution function

- The PDF $p(x)$ is the derivative of the random variable's CDF:

$$
p(x)=\frac{d P(x)}{d x}
$$

$P(x)$: cumulative distribution function (CDF), also called cumulative density function

Cumulative distribution function

- The PDF $p(x)$ is the derivative of the random variable's CDF:

$$
p(x)=\frac{d P(x)}{d x}
$$

$$
P(x)=\int_{-\infty}^{x} p(x) d x
$$

$P(x)$: cumulative distribution function (CDF), also called cumulative density function

Cumulative distribution function

Cumulative distribution function

Cumulative distribution function

Cumulative distribution function

Probability: Integral of PDF

- Given the arbitrary interval $[a, b]$ in the domain, integrating the PDF gives the probability that a RV lies inside that interval:

$$
P(x \in[a, b])=\int_{a}^{b} p(x) d x
$$

Probability: Integral of PDF

- Given the arbitrary interval $[a, b]$ in the domain, integrating the PDF gives the probability that a RV lies inside that interval:

$$
P(x \in[a, b])=\int_{a}^{b} p(x) d x
$$

Examples: Sampling PDFs

Constant Sampling PDFs

Constant Sampling PDFs

Constant Sampling PDFs

Constant Sampling PDFs

Random 1D

$$
\xi \in[0,1)
$$

Sampling a unit domain with uniform random samples

Constant Sampling PDFs

Random 1D

$$
\xi \in[0,1)
$$

Sampling a unit domain with uniform random samples

Constant Sampling PDFs

Random 1D

$$
\xi \in[0,1)
$$

Sampling a unit domain with uniform random samples

Constant Sampling PDFs

Random 1D

$$
p(x)= \begin{cases}\mathrm{C} & x \in[0,1) \\ 0 & \text { otherwise }\end{cases}
$$

$$
\xi \in[0,1)
$$

Sampling a unit domain with uniform random samples

Constant Sampling PDFs

Jittered 1D

Sampling each stratum with uniform random samples

Constant Sampling PDFs

Jittered 1D

Sampling each stratum with uniform random samples

Constant Sampling PDFs

Jittered 1D

Sampling each stratum with uniform random samples

Constant Sampling PDFs

Jittered 1D

Sampling each stratum with uniform random samples

Constant Sampling PDFs

Jittered 1D

Probability density of generating a sample in an i-th stratum is given by:

$$
p\left(x_{i}\right)=? ? ?
$$

Sampling each stratum with uniform random samples

Constant Sampling PDFs

Jittered 1D

Probability density of generating a sample in an i-th stratum is given by:

$$
p\left(x_{i}\right)= \begin{cases}N & x \in\left[\frac{i}{N}, \frac{i+1}{N}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Sampling each stratum with uniform random samples

Joint PDFs

Jittered 1D

First, we divide the domain into equal strata.

Joint PDFs

Jittered 1D

First, we divide the domain into equal strata.

Second, we sample the domain.

Joint PDFs

Jittered 1D

First, we divide the domain into equal strata.

Second, we sample the domain.

This implies that two samples are correlated to each other.

Joint PDFs

Jittered 1D

First, we divide the domain into equal strata.

Second, we sample the domain.

This implies that two samples are correlated to each other.

For two different strata i and j, what is the joint PDF for jittered sampling ?

$$
p\left(x_{i}, x_{j}\right)=? ? ?
$$

Conditional and Marginal PDFs

Joint PDF

For two random variables X_{1} and X_{2}, the joint PDF $p\left(x_{1}, x_{2}\right)$ is given by:

Joint PDF

For two random variables X_{1} and X_{2}, the joint PDF $p\left(x_{1}, x_{2}\right)$ is given by:

$$
p\left(x_{1}, x_{2}\right)=p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)
$$

Joint PDF

For two random variables X_{1} and X_{2}, the joint PDF $p\left(x_{1}, x_{2}\right)$ is given by:

$$
p\left(x_{1}, x_{2}\right)=p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)
$$

where,

$$
\begin{array}{lc}
X_{1}=x_{1} & p\left(x_{2} \mid x_{1}\right): \text { conditional density function } \\
X_{2}=x_{2} & p\left(x_{1}\right) \quad: \text { marginal density function }
\end{array}
$$

Joint PDF

For two random variables X_{1} and X_{2}, the joint PDF $p\left(x_{1}, x_{2}\right)$ is given by:

$$
p\left(x_{1}, x_{2}\right)=p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)
$$

where,

$$
\begin{array}{lr}
X_{1}=x_{1} & p\left(x_{2} \mid x_{1}\right) \\
X_{2}=x_{2} & p\left(x_{1}\right)
\end{array}: \text { conditional density function }
$$

Joint PDF

For two random variables X_{1} and X_{2}, the joint PDF $p\left(x_{1}, x_{2}\right)$ is given by:

$$
p\left(x_{1}, x_{2}\right)=p\left(x_{1} \mid x_{2}\right) p\left(x_{2}\right)
$$

where,

$$
\begin{array}{lr}
X_{1}=x_{1} & p\left(x_{1} \mid x_{2}\right): \\
X_{2}=x_{2} & p\left(x_{2}\right)
\end{array}: \text { conditional density function }
$$

Marginal PDF

$$
\begin{aligned}
& p\left(x_{1}\right)=\int_{\mathbb{R}} p\left(x_{1}, x_{2}\right) d x_{2} \\
& p\left(x_{2}\right)=\int_{\mathbb{R}} p\left(x_{1}, x_{2}\right) d x_{1}
\end{aligned}
$$

We integrate out one of the variable.

Conditional PDF

$$
\begin{aligned}
& p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)} \\
& p\left(x_{2} \mid x_{1}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{1}\right)}
\end{aligned}
$$

The conditional density function is the density function for x_{i} given that some particular x_{j} has been chosen.

Conditional PDF

If both x_{1} and x_{2} are independent then:

$$
\begin{aligned}
& p\left(x_{1} \mid x_{2}\right)=p\left(x_{1}\right) \\
& p\left(x_{2} \mid x_{1}\right)=p\left(x_{2}\right)
\end{aligned}
$$

Conditional PDF

If both x_{1} and x_{2} are independent then:

$$
\begin{aligned}
& p\left(x_{1} \mid x_{2}\right)=p\left(x_{1}\right) \\
& p\left(x_{2} \mid x_{1}\right)=p\left(x_{2}\right)
\end{aligned}
$$

That gives:

$$
p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)
$$

Joint PDF of Jittered 1D Sampling

For two different strata i and j, what is the joint PDF for jittered sampling?

$$
p\left(x_{i}, x_{j}\right)=? ? ?
$$

Joint PDF of Jittered 1D Sampling

Joint PDF of Jittered 1D Sampling

Joint PDF of Jittered 1D Sampling

$$
p\left(x_{i}, x_{j}\right)= \begin{cases}p\left(x_{i}\right) p\left(x_{j}\right) & i \neq j \\ 0 & \text { otherwise }\end{cases}
$$

Joint PDF of Jittered 1D Sampling

$$
\begin{aligned}
& p\left(x_{i}, x_{j}\right)= \begin{cases}p\left(x_{i}\right) p\left(x_{j}\right) & i \neq j \\
0 & \text { otherwise }\end{cases} \\
& p\left(x_{i}, x_{j}\right)=\left\{\begin{array}{ll}
N^{2} & i \neq j \\
0 & \text { otherwise }
\end{array} \quad \text { Since, } p\left(x_{i}\right)=N\right.
\end{aligned}
$$

Expected Value

Expected value

- Expected value: average value of the variable

$$
E[X]=\sum_{i=1}^{N} x_{i} p_{i}
$$

- example: rolling a die

$$
E[X]=
$$

Expected value

- Expected value: average value of the variable

$$
E[X]=\sum_{i=1}^{N} x_{i} p_{i}
$$

- example: rolling a die

$$
E[X]=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=3.5
$$

Expected value

- Properties:

$$
E[X+Y]=E[X]+E[Y]
$$

Expected value

- Properties:

$$
\begin{aligned}
E[X+Y] & =E[X]+E[Y] \\
E[X+c] & =E[X]+c
\end{aligned}
$$

Expected value

- Properties:

$$
\begin{aligned}
E[X+Y] & =E[X]+E[Y] \\
E[X+c] & =E[X]+c \\
E[c X] & =c E[X]
\end{aligned}
$$

Estimating expected values

- To estimate the expected value of a variable

Estimating expected values

- To estimate the expected value of a variable
- choose a set of random values based on the probability

Estimating expected values

- To estimate the expected value of a variable
- choose a set of random values based on the probability
- average their results

Estimating expected values

- To estimate the expected value of a variable
- choose a set of random values based on the probability
- average their results

$$
E[X] \approx \frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

Estimating expected values

- To estimate the expected value of a variable
- choose a set of random values based on the probability
- average their results

$$
E[X] \approx \frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- example: rolling a die

Estimating expected values

- To estimate the expected value of a variable
- choose a set of random values based on the probability
- average their results

$$
E[X] \approx \frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- example: rolling a die
- roll 3 times: $\{3,1,6\} \rightarrow E[\mathrm{x}] \approx$

Estimating expected values

- To estimate the expected value of a variable
- choose a set of random values based on the probability
- average their results

$$
E[X] \approx \frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- example: rolling a die
- roll 3 times: $\{3,1,6\} \rightarrow E[\mathrm{x}] \approx$

Estimating expected values

- To estimate the expected value of a variable
- choose a set of random values based on the probability
- average their results

$$
E[X] \approx \frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- example: rolling a die
- roll 3 times: $\{3,1,6\} \rightarrow E[\mathrm{x}] \approx(3+1+6) / 3=3.33$

Estimating expected values

- To estimate the expected value of a variable
- choose a set of random values based on the probability
- average their results

$$
E[X] \approx \frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- example: rolling a die
- roll 3 times: $\{3,1,6\} \rightarrow E[\mathrm{x}] \approx(3+1+6) / 3=3.33$

Estimating expected values

- To estimate the expected value of a variable
- choose a set of random values based on the probability
- average their results

$$
E[X] \approx \frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- example: rolling a die
- roll 3 times: $\{3,1,6\} \rightarrow E[\mathrm{x}] \approx(3+1+6) / 3=3.33$
- roll 9 times: $\{3,1,6,2,5,3,4,6,2\} \rightarrow E[\mathrm{x}]$

Estimating expected values

- To estimate the expected value of a variable
- choose a set of random values based on the probability
- average their results

$$
E[X] \approx \frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- example: rolling a die
- roll 3 times: $\{3,1,6\} \rightarrow E[\mathrm{x}] \approx(3+1+6) / 3=3.33$
- roll 9 times: $\{3,1,6,2,5,3,4,6,2\} \rightarrow E[\mathrm{x}]$

Estimating expected values

- To estimate the expected value of a variable
- choose a set of random values based on the probability
- average their results

$$
E[X] \approx \frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- example: rolling a die
- roll 3 times: $\{3,1,6\} \rightarrow E[x] \approx(3+1+6) / 3=3.33$
- roll 9 times: $\{3,1,6,2,5,3,4,6,2\} \rightarrow E[\mathrm{x}] \approx 3.51$

Law of large numbers

- By taking infinitely many samples, the error between the estimate and the expected value is statistically zero
- the estimate will converge to the right value

$$
\text { probability }\left[E[x]=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} x_{i}\right]=1
$$

Variance

Variance

- Variance: how much different from the average

$$
\sigma^{2}[X]=E\left[(X-E[X])^{2}\right]
$$

Variance

- Variance: how much different from the average

$$
\begin{aligned}
\sigma^{2}[X] & =E\left[(X-E[X])^{2}\right] \\
& =E\left[X^{2}+E[X]^{2}-2 X E[X]\right]
\end{aligned}
$$

Variance

- Variance: how much different from the average

$$
\begin{aligned}
\sigma^{2}[X] & =E\left[(X-E[X])^{2}\right] \\
& =E\left[X^{2}+E[X]^{2}-2 X E[X]\right] \\
& \left.=E\left[X^{2}\right]+E\left[E[X]^{2}\right]-2 E[X] E[E[X]]\right]
\end{aligned}
$$

Variance

- Variance: how much different from the average

$$
\begin{aligned}
\sigma^{2}[X] & =E\left[(X-E[X])^{2}\right] \\
& =E\left[X^{2}+E[X]^{2}-2 X E[X]\right] \\
& \left.=E\left[X^{2}\right]+E\left[E[X]^{2}\right]-2 E[X] E[E[X]]\right] \\
& =E\left[X^{2}\right]+E[X]^{2}-2 E[X]^{2}
\end{aligned}
$$

Variance

- Variance: how much different from the average

$$
\begin{aligned}
\sigma^{2}[X] & =E\left[(X-E[X])^{2}\right] \\
& =E\left[X^{2}+E[X]^{2}-2 X E[X]\right] \\
& \left.=E\left[X^{2}\right]+E\left[E[X]^{2}\right]-2 E[X] E[E[X]]\right] \\
& =E\left[X^{2}\right]+E[X]^{2}-2 E[X]^{2} \\
& =E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

Variance

- Variance: how much different from the average

$$
\begin{aligned}
\sigma^{2}[X] & =E\left[(X-E[X])^{2}\right] \\
& =E\left[X^{2}+E[X]^{2}-2 X E[X]\right] \\
& \left.=E\left[X^{2}\right]+E\left[E[X]^{2}\right]-2 E[X] E[E[X]]\right] \\
& =E\left[X^{2}\right]+E[X]^{2}-2 E[X]^{2} \\
& =E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

Variance

- Variance: how much different from the average

$$
\begin{aligned}
\sigma^{2}[X] & =E\left[(X-E[X])^{2}\right] \\
& =E\left[X^{2}+E[X]^{2}-2 X E[X]\right] \\
& \left.=E\left[X^{2}\right]+E\left[E[X]^{2}\right]-2 E[X] E[E[X]]\right] \\
& =E\left[X^{2}\right]+E[X]^{2}-2 E[X]^{2} \\
& =E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

$$
\sigma^{2}[X]=E\left[X^{2}\right]-E[X]^{2}
$$

Variance

- example: Rolling a die
- variance:

$$
\sigma^{2}[X]=\ldots=
$$

Variance

- example: Rolling a die
- variance:

$$
\sigma^{2}[X]=E\left[X^{2}\right]-E[X]^{2}
$$

$$
\sigma^{2}[X]=\ldots=
$$

Variance

- example: Rolling a die
- variance:

$$
\sigma^{2}[X]=E\left[X^{2}\right]-E[X]^{2}
$$

$$
\sigma^{2}[X]=\ldots=
$$

$$
E[X]=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=3.5
$$

Variance

- example: Rolling a die
- variance:

$$
\sigma^{2}[X]=E\left[X^{2}\right]-E[X]^{2}
$$

$$
\sigma^{2}[X]=\ldots=2.917
$$

Monte Carlo Integration

$$
I=\int_{D} f(x) \mathrm{d} x
$$

Slide after Wojciech Jarosz

Monte Carlo Integration

$$
I=\int_{D} f(x) \mathrm{d} x
$$

Slide after Wojciech Jarosz

Monte Carlo Integration

$$
I=\int_{D} f(x) \mathrm{d} x
$$

II

