

Robust Sampling for Progressive Global Illumination

Iliyan Georgiev Philipp Slusallek

Saarland University
DFKI

Outline

- 1. Motivation
 - a) Progressive rendering
 - b) Importance (of) sampling
- 2. Importance sampling of virtual point lights
- 3. Importance caching for complex illumination

photo-realism

Time: 21 hours

"The Wet Bird"

Internet Ray Tracing Competition

Progressive rendering

- * A decent solution
- Quickly gaining popularity
 - Progressively increasing quality (while still)
 - Low-latency interaction
 - X Difficult to reuse samples
- Need algorithms that
 - Converge ← ultimate quality
 - Have fixed memory footprint ← limited memory
 - Are well parallelizable ← parallel hardware

Importance (of) sampling

- Only classic brute-force algorithms used in practice
 - Fulfill requirements
 - XSlow... convergence...
- * Tremendous improvements by smarter sampling
 - Importance sampling
 - Multiple importance sampling (MIS)
 - Adaptive sampling

Importance Sampling of Virtual Point Lights

Eurographics 2010

short paper

Motivation

- Instant Radiosity (IR) two-pass
 - Cheap pre-processing
 - Expensive rendering
- Previous approaches
 - Bidirectional/Metropolis Instant Radiosity [Segovia et al.]
 - Difficult to implement
 - Multiple sampling strategies
 - Many parameters
 - Difficult to stratify
 - "One-pixel image" assumption

Our method

- Simple extension of IR
 - Generate VPLs from light sources only
- Probabilistically accept VPLs
 - Proportionally to total contribution
 - All VPLs bring the same power to the image
 - "One-pixel image" assumption
- Minimum importance storage
 - Filter VPLs on the fly

Probabilistic VPL acceptance

VPL energy

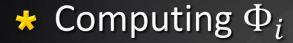
$$L_{i} = \frac{L_{i}}{p_{i}} p_{i} = \frac{L_{i}}{p_{i}} \int_{0}^{1} \chi_{[0,p_{i}]}(t) dt$$

 \star One-sample Monte Carlo integration with ξ

$$\widehat{L}_i = \begin{cases} \frac{L_i}{p_i}, & \xi < p_i \\ 0, & \text{else} \end{cases}$$

Allows to control VPL density

Choosing the acceptance probability



- Want N VPLs with equal total contribution
 - $\Phi_v = \frac{\Phi}{N}$
- \star For each VPL candidate i with energy L_i
 - Estimate total contribution Φ_i
 - Russian roulette decision with $\,p_i = \min\left(rac{\Phi_i}{\Phi_
 u} + arepsilon_{
 m p}, 1
 ight)$
 - Accept with energy $\frac{L_i}{p_i}$
 - Discard

Estimating Image Contribution

- Create a number of samples from camera rays
 - Analogs of importons
- Connect VPLs to camera samples

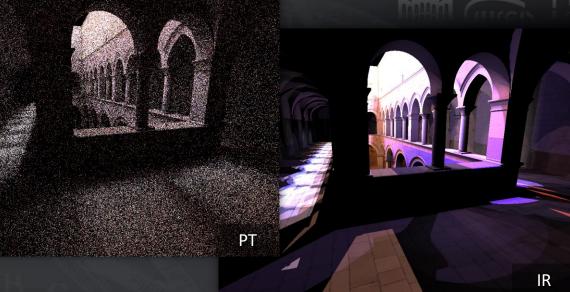
★ Computing Φ

- Progressively
 - Set $\Phi = 0$
 - Loop
 - ullet Render frame, compute Φ^i
 - Accumulate $\Phi = \left(1 \frac{1}{i}\right)\Phi + \frac{1}{i}\Phi^i$
- In a single pass path tracing, using VPLs, etc.

Wrap Up

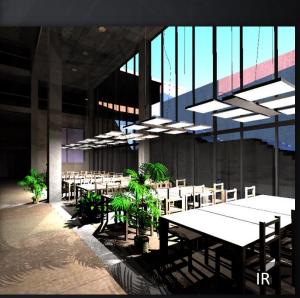
- Simple extension of IR
 - Generate VPLs from light sources only
- Probabilistically accept VPLs on the fly
 - Fixed minimal additional storage
 - Easy to parallelize
- Two parameters
 - $\epsilon_{\rm p} = 0.05$
 - Number of camera samples, e.g. 100
- "One-pixel image" assumption

Importance Caching for Complex Illumination


Eurographics 2012

full paper


Motivation



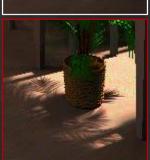
Motivation

- Global illumination still very costly
 - Indirect illumination
 - Even direct illumination environment, area lights
- * Two basic algorithmic improvements
 - Importance sampling
 - Better sample distribution (ideally proportional to integrand)
 - Higher quality with fewer samples
 - Exploiting coherence
 - Pixel integrands are often highly correlated
 - Amortize sampling effort among pixels
 - Fast!

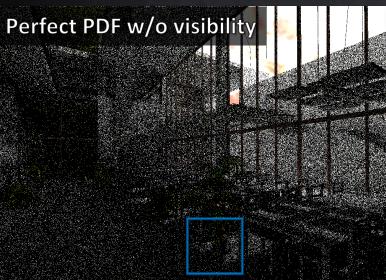
Background

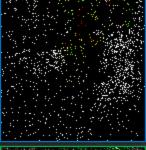
(inte

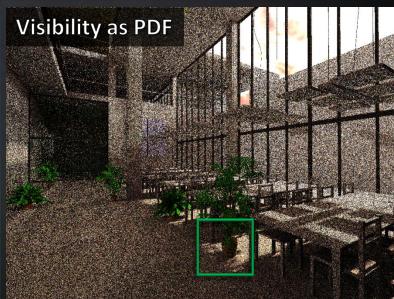
Importance Sampling


- Global virtual point lights (VPLs)
 - Importance-driven sample generation/filtering
 - Find relevant VPLs for the current view point (one-pixel image)
 - Fast few VPLs
 - X Suboptimal − VPL importance varies across pixels
- Local (per pixel)
 - Construct product PDF specialized for integrand
 - Robust PDF often matches integrand well
 - X Not in the presence of occlusion
 - Costly per-pixel PDF construction (BRDF pre-processing)

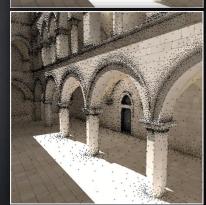
Motivation (Single Sample per Pixel)







Background


Exploiting Coherence

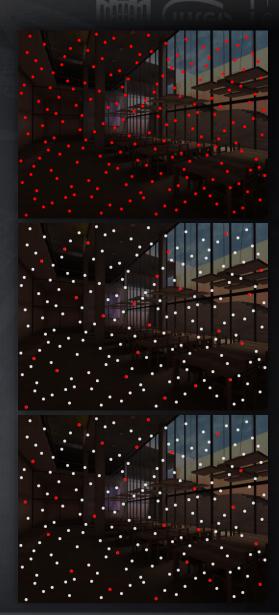
- Illumination is often smooth
 - Especially indirect
 - Correlated pixel integrals
- * Filtering
 - Idea share samples among integrals
 - Reuse samples by interpolation/filtering
 - Irradiance caching, photon mapping
 - Preserve discontinuities
 - Smooth, low-variance results
 - Biased, smeared edges → indirect only
 - Slow convergence, increased memory usage



Algorithm Overview

- * Idea combine all three
 - Unbiased VPL sampling framework
 - Shade only few most relevant VPLs
- * Approach
 - Consider full integrand (visibility)
 - Shade all VPLs at few locations
 - Reuse VPL evaluations as importance at other locations
- Issue illumination discontinuities
 - Additional more conservative distributions
 - Efficient MIS combination at shading points

Algorithm Outline



- Progressive rendering
 - Interactive feedback, fixed-memory convergence
- * For each frame
 - 1) Create importance records (IR) from camera
 - 2) Create virtual point lights (VPLs)
 - Probabilistic rejection (global)
 - 3) Store VPL distributions at each IR (local)
 - 4) Render
 - Borrow nearby IR distributions for VPL sampling (coherence)

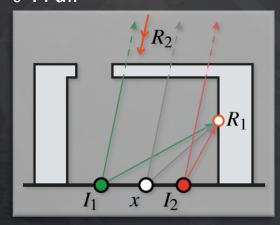
Preprocess

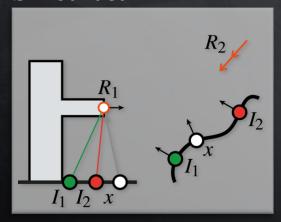
- VPLs on light sources and indirect
- * IRs store VPL contributions
 - Accumulated during VPL generation
- Discard VPLs irrelevant for the image
 - Immediately after generation
 - Subset of IRs for contribution estimate
 - Halton sequence periodicity
- * Accumulate VPL contribution to IRs

Rendering

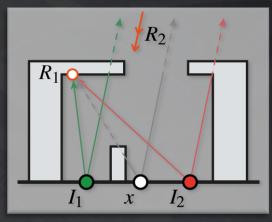
- For each pixel shading point
 - Find nearest IRs
 - Use IR distributions defined for VPL sampling
- * Robust sampling if at least one IR correlates
- Increased variance when all IRs irrelevant
 - Identify causes for VPL contribution changes
 - Additional, increasingly conservative distributions
- Many strategies combine efficiently
 - Bilateral MIS combination framework

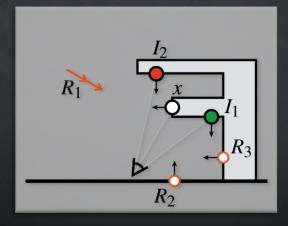
Sampling distributions





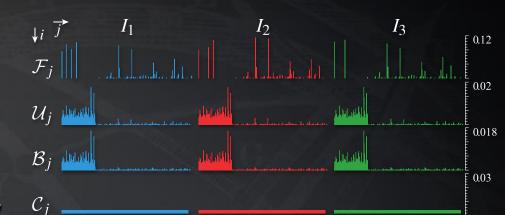
* Four sampling distributions at each IR


 \mathcal{F} : Full


 \mathcal{B} : Bounded

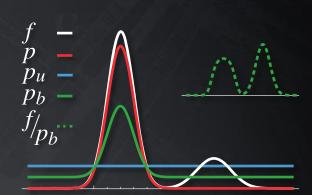
 \mathcal{U} : Unoccluded

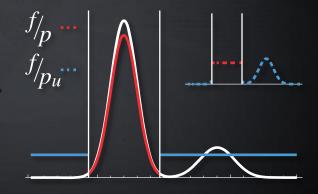
 \mathcal{C} : Conservative



Distribution Combination

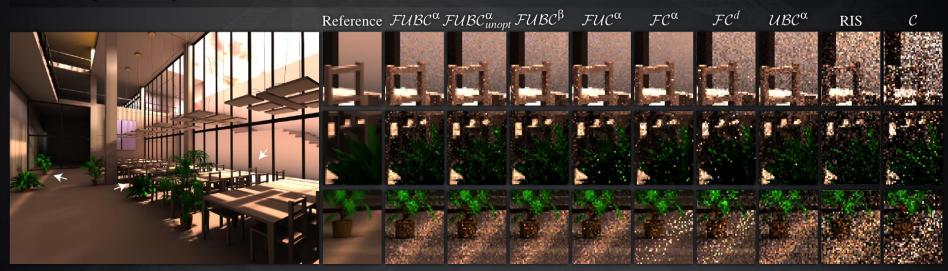
- Matrix structure
- Distributions often correlate among IRs
 - Combine first horizontally
 - Balance heuristic
 - Corresponds to mixture
 - Directly sample mixture
 - Collapse columns into one

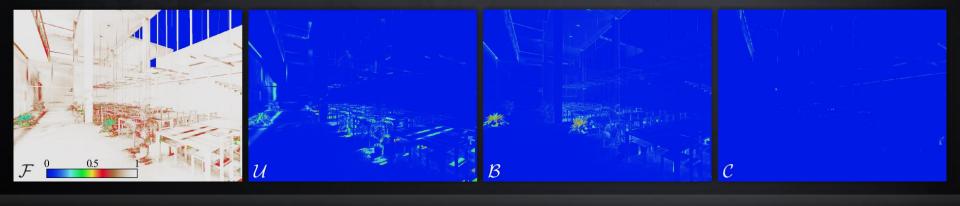

Distribution Combination



Vertical Combination

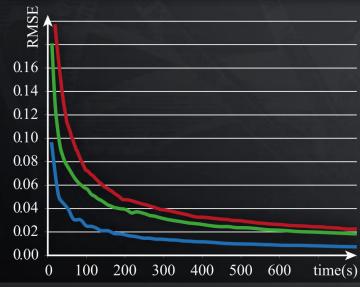
- Balance/power heuristics suboptimal
- * Novel α -max combination heuristic
 - Prioritize distributions: \mathcal{F} , \mathcal{U} , \mathcal{B} , \mathcal{C}
 - Define confidences: $\alpha_{\mathcal{F}}$, $\alpha_{\mathcal{U}}$, $\alpha_{\mathcal{B}}$, $\alpha_{\mathcal{C}}$
 - Discard low-probability samples
 - If $p_{\mathcal{F}}(x) < \alpha_{\mathcal{U}} p_{\mathcal{U}}(x)$
- Distribution optimization
 - Apply heuristic at each IR
 - Exactly one distribution is non-zero for each VPL

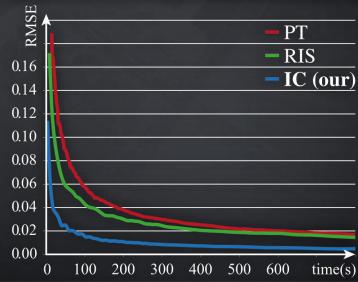


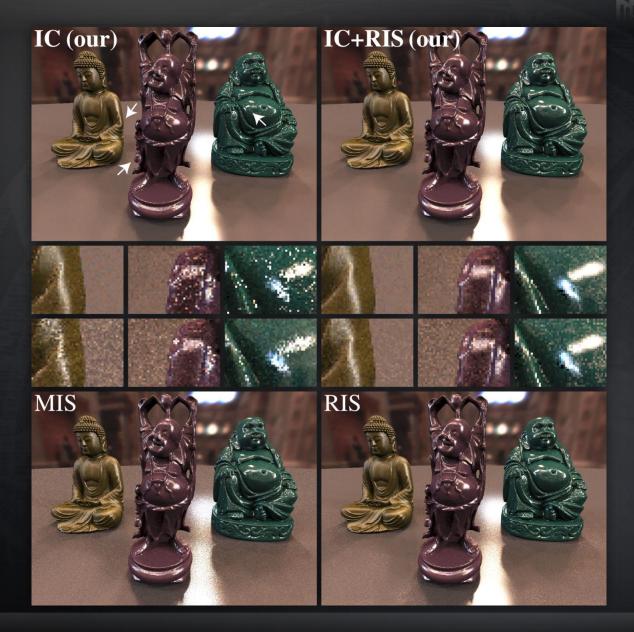

Results Study Hall (diffuse)

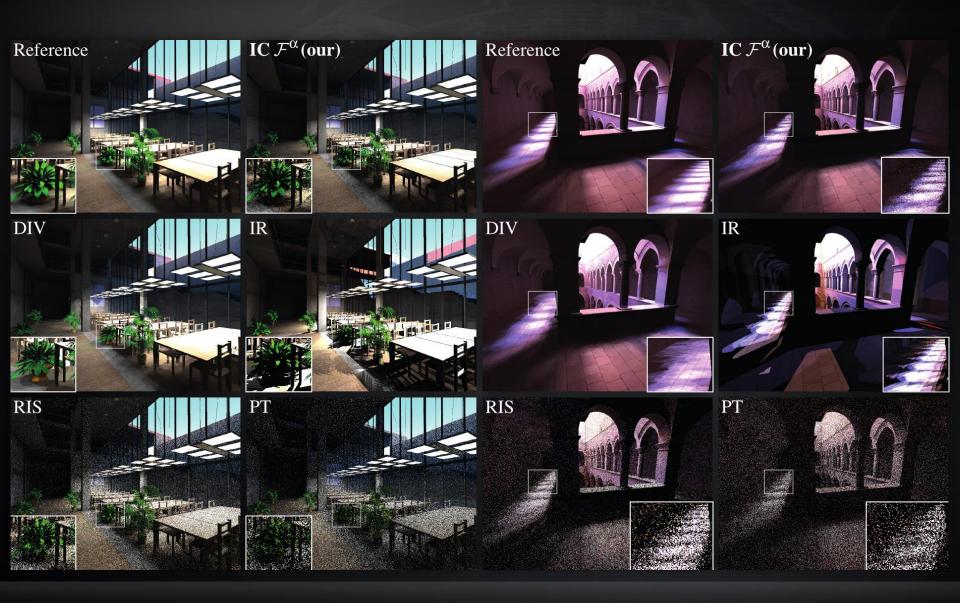
Technique comparison

$\mathcal{F}\mathcal{U}\mathcal{B}\mathcal{C}^{lpha}$ fractional contributions




Numerical tests




Glossy

(intel)

Preview quality (0.5 FPS)

Summary

- Exploiting coherence in an unbiased way
 - Can capture discontinuities
 - Only error is noise (and VPL clamping)
 - Specialized sampling techniques
- * All VPL types handled simultaneously
- Progressive rendering
 - First good approximation within a second
 - Full convergence with fixed memory footprint