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Introduction

The Metropolis-Hastings Algorithm

» Introduced in 1953 by Nicholas Metropolis, Arianna W.
Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and
Edward Teller.

> Initially designed for the Boltzmann distribution, and was later
generalized and formalized by W.K. Hastings in 1970.

» Allows to sample from probability distributions that are only
known point-wise—and this, even if it is up to a constant.

» The theory behind it is related to Markov chains, which will
be introduced in this lecture.



Background

Notation and Reminders

> X': set of states,

» B(X): o-algebra over X,

X € B(X),

B(X) is stable under complementation,

B(X) is stable under countable union.

Informally: "o-algebras have the properties you would expect
for performing algebra on sets.”
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a measure over B(X) iff:

(@) =0,

VB € B(X), u(B) >0,

For all countable collections of disjoint sets {E;}$2,

1 (ks Ei) = 2202y ml(Eie).

Informally: "Measure functions have the properties you would
expect for measuring sets.”
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Background

Transition Kernel
A transition kernel is a function K defined on X x B(X) s.t.

» Vx € X, K(x,-) is a probability measure,
» VA € B(X), K(-,A) is measurable.

Informally: "K(x, A) is the probability of ending in the set of
states A from a state x.”



Background

Example
If X = {X4,..., Xk}, the transition kernel is the following matrix:

P(Xp =Xy Xoo1=X1) -+ P(Xp= X Xp_1 = A1)
K= 5 5
P(Xp = Xy| X1 = Xp) -+ P(Xp= Xi|Xp_1 = X)

Note that each row sums up to 1 since Vx, > P(y|x) = L.
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Background

Example
If X is continuous, we have:

P(XEA|X):/AK(X,y)dy



Background

Homogeneous Markov Chain

An homogeneous Markov chain is a sequence (X,) of random
variables s.t.

Vk, P(Xk+1 S A|X0,X1, ...,Xk) = P(Xk+1 € A|Xk) = / K(Xk,dX)
A

Informally: "Each state of the chain only depends on the previous

”

one.

This definition implies that the construction of the chain is
determined by an initial state xg, and a transition kernel.



Background

Irreducibility
The Markov chain (X,) with transition kernel K is ¢-irreducible iff:

VA € B(X) with ¢(A) > 0,3n s.t. K"(x,A) >0 Vxe X
Informally: "All states communicate in a finite number of steps.”

Example
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Background

Detailed Balance
A Markov chain with transition kernel K statisfies the detailed

balance condition if there exists a function f s.t.

V(x,y), K(y,x) f(y) = K(x,y) f(x)

Informally: ”Going from state x to state y has the same
probability as going from y to x.”



Background

Stationary Distribution

A probability measure 7 is a stationary distribution for the
transition kernel K iff

VB € B(X), m(B) = /K(X, B)7(x) dx

Informally: "A transition leaves a stationary distribution
unchanged.”

Under the condition of irreducibility, this distribution is unique up
to a multiplicative constant.



Background

Theorem

If a Markov chain with transition kernel K statisfies the detailed
balance condition with the pdf 7, then 7 is the stationary
distribution of the chain.

Proof: Using the fact that K(y,x) n(y) = K(x, y) 7(x).

/YK(yyB)W(y)dy=//K(y,X)ﬂ(y)dxdy
// x,y) 7(x) dxdy
= [ 7 [ Keoy) dy e

= /Bﬂ'(x) dx = w(B)
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» Sampling X ~ f(x)

» When f can be inversed analytically, use inversion.



Metropolis Sampling

Problem
» Sampling X ~ f(x)
» When f can be inversed analytically, use inversion.

» When f is known up to a constant, use rejection sampling.



Metropolis Sampling

Problem
Sampling X ~ f(x)

When f can be inversed analytically, use inversion.

v

v
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When f is known up to a constant, use rejection sampling.

v

When f is only known point-wise and up to a constant, what
can we do?



Metropolis Sampling

The Metropolis-Hastings algorithm
Idea: Construct an homogeneous Markov chain that converges to
the target distribution f(x). Here, g is a function s.t. gaf.

Start from an initial state xp, and t = 0.
loop

Choose a proposal sample Y; ~ gq(y|x:).

— min(1, 9bely)g(x)
Compute a = m/n(la q(yt|xz)g(Xr))'

Sample U ~ U(0,1).

if v < athen

Xe4+1 € Yt > Accept
else

Xpp1 — Xt > Reject
end if
t+—t+1

end loop
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Proposal distribution

» How to design the proposal distribution g7



Metropolis Sampling

Proposal distribution

>

>

How to design the proposal distribution g7

Freedom in the choice of g as long as it follows some
properties to ensure convergence.

The two following conditions form a sufficient convergence
criterion:

» Non-zero rejection probability
P [f(Xe)a(YelXe) < F(Yi)a(XelYe)] <1

» Strong irreducibility
V(x,y), qlylx) >0
When these conditions are met, the chain converges to the
stationary distribution of the chain.



Metropolis Sampling

Convergence
We can prove that:

» The kernel associated with the Markov chain generated by the
algorithm statisfies the detailed balance with the target
function f.

» This implies that f is a stationary distribution of the chain.

» Under the sufficient convergence conditions, the chain then
converges to the distribution f.



Metropolis Sampling

Key Messages

» The Metropolis Hastings algorithm generates a Markov chain
which converges to the distribution f.

> There is freedom in the choice of the proposal g as long as
the convergence is ensured.

» The target function f needs only be known point-wise and up
to a constant.



Practical Example

Sampling a Complex Function

» Sampling from the function f(x) = (cos(50 x) + sin(20 x))?.

» Python-powered utterly cool demo.



	Introduction
	Background
	Metropolis Sampling
	Practical Example

