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Introduction

The Metropolis-Hastings Algorithm

I Introduced in 1953 by Nicholas Metropolis, Arianna W.
Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and
Edward Teller.

I Initially designed for the Boltzmann distribution, and was later
generalized and formalized by W.K. Hastings in 1970.

I Allows to sample from probability distributions that are only
known point-wise—and this, even if it is up to a constant.

I The theory behind it is related to Markov chains, which will
be introduced in this lecture.



Background

Notation and Reminders

I X : set of states,
I B(X ): σ-algebra over X ,

I X ∈ B(X ),
I B(X ) is stable under complementation,
I B(X ) is stable under countable union.
I Informally: ”σ-algebras have the properties you would expect

for performing algebra on sets.”

I µ is a measure over B(X ) iff:
I µ(∅) = 0,
I ∀B ∈ B(X ), µ(B) ≥ 0,
I For all countable collections of disjoint sets {Ei}∞i=1,
µ
(∑∞

k=1 Ek

)
=
∑∞

k=1 µ(Ek).
I Informally: ”Measure functions have the properties you would

expect for measuring sets.”



Background

Transition Kernel
A transition kernel is a function K defined on X × B(X ) s.t.

I ∀x ∈ X , K (x , ·) is a probability measure,

I ∀A ∈ B(X ), K (·,A) is measurable.

Informally: ”K (x ,A) is the probability of ending in the set of
states A from a state x.”



Background

Example

If X = {X1, ...,Xk}, the transition kernel is the following matrix:

K =


P(Xn = X1|Xn−1 = X1) · · · P(Xn = Xk |Xn−1 = X1)

...
. . .

...
P(Xn = X1|Xn−1 = Xk) · · · P(Xn = Xk |Xn−1 = Xk)


Note that each row sums up to 1 since ∀x ,

∑
y P(y |x) = 1.



Background

Example

X1

X2 X3

0.6
0.3

0.1

0.4

0.4
0.2

0.1

0.2

0.7

K =

 0.1 0.3 0.6
0.4 0.4 0.2
0.1 0.7 0.2





Background

Example

If X is continuous, we have:

P(X ∈ A|x) =

∫
A
K (x , y) dy



Background

Homogeneous Markov Chain

An homogeneous Markov chain is a sequence (Xn) of random
variables s.t.

∀k , P(Xk+1 ∈ A|x0, x1, ..., xk) = P(Xk+1 ∈ A|xk) =

∫
A
K (xk , dx)

Informally: ”Each state of the chain only depends on the previous
one.”

This definition implies that the construction of the chain is
determined by an initial state x0, and a transition kernel.



Background

Irreducibility

The Markov chain (Xn) with transition kernel K is φ-irreducible iff:

∀A ∈ B(X ) with φ(A) > 0,∃n s.t. Kn(x ,A) > 0 ∀x ∈ X

Informally: ”All states communicate in a finite number of steps.”

Example

X1 X2

1.0

0.5
0.5

K =

(
0.0 1.0
0.5 0.5

)



Background

Detailed Balance
A Markov chain with transition kernel K statisfies the detailed
balance condition if there exists a function f s.t.

∀(x , y), K (y , x) f (y) = K (x , y) f (x)

Informally: ”Going from state x to state y has the same
probability as going from y to x.”



Background

Stationary Distribution

A probability measure π is a stationary distribution for the
transition kernel K iff

∀B ∈ B(X ), π(B) =

∫
K (x ,B)π(x) dx

Informally: ”A transition leaves a stationary distribution
unchanged.”

Under the condition of irreducibility, this distribution is unique up
to a multiplicative constant.



Background

Theorem
If a Markov chain with transition kernel K statisfies the detailed
balance condition with the pdf π, then π is the stationary
distribution of the chain.

Proof: Using the fact that K (y , x)π(y) = K (x , y)π(x).

∫
Y

K (y ,B)π(y) dy =

∫
Y

∫
B

K (y , x)π(y) dx dy

=

∫
Y

∫
B

K (x , y)π(x) dx dy

=

∫
B

π(x)

∫
Y

K (x , y) dy dx

=

∫
B

π(x) dx = π(B)



Metropolis Sampling

Problem

I Sampling X ∼ f (x)

I When f can be inversed analytically, use inversion.

I When f is known up to a constant, use rejection sampling.

I When f is only known point-wise and up to a constant, what
can we do?
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Metropolis Sampling

The Metropolis-Hastings algorithm

Idea: Construct an homogeneous Markov chain that converges to
the target distribution f (x). Here, g is a function s.t. g α f .

Start from an initial state x0, and t = 0.
loop

Choose a proposal sample Yt ∼ q(y |xt).

Compute a = min(1, q(xt |yt)g(yt)q(yt |xt)g(xt) ).

Sample U ∼ U(0, 1).
if u ≤ a then

xt+1 ←− yt . Accept
else

xt+1 ←− xt . Reject
end if
t ←− t + 1

end loop



Metropolis Sampling

Proposal distribution

I How to design the proposal distribution q?

I Freedom in the choice of q as long as it follows some
properties to ensure convergence.

I The two following conditions form a sufficient convergence
criterion:

I Non-zero rejection probability
P
[
f (Xt)q(Yt |Xt) ≤ f (Yt)q(Xt |Yt)

]
< 1

I Strong irreducibility
∀(x , y), q(y |x) > 0

I When these conditions are met, the chain converges to the
stationary distribution of the chain.
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Metropolis Sampling

Convergence

We can prove that:

I The kernel associated with the Markov chain generated by the
algorithm statisfies the detailed balance with the target
function f .

I This implies that f is a stationary distribution of the chain.

I Under the sufficient convergence conditions, the chain then
converges to the distribution f .



Metropolis Sampling

Key Messages

I The Metropolis Hastings algorithm generates a Markov chain
which converges to the distribution f .

I There is freedom in the choice of the proposal q as long as
the convergence is ensured.

I The target function f needs only be known point-wise and up
to a constant.



Practical Example

Sampling a Complex Function

I Sampling from the function f (x) = (cos(50 x) + sin(20 x))2.

I Python-powered utterly cool demo.
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