
Realistic Image Synthesis SS2018

Reconstruction I
Philipp Slusallek Karol Myszkowski

Gurprit Singh

�1

Realistic Image Synthesis SS2018

À la Carte

!2

• Reconstruction vs Integration

• Multi-dimensional Sampling and Reconstruction

• Temporal Light Field Reconstruction

• Random Parameter Filtering of Monte Carlo Noise

Realistic Image Synthesis SS2018

Reconstruction vs Integration

!3

Slides courtesy: Kartic Subr

Realistic Image Synthesis SS2018

!4

Realistic Image Synthesis SS2018

!5

Realistic Image Synthesis SS2018

!6

Realistic Image Synthesis SS2018

!7

Realistic Image Synthesis SS2018

!8

Realistic Image Synthesis SS2018

!9

Realistic Image Synthesis SS2018

!10

Realistic Image Synthesis SS2018

!11

Realistic Image Synthesis SS2018

!12

Realistic Image Synthesis SS2018

!13

Realistic Image Synthesis SS2018

!14

Realistic Image Synthesis SS2018

Multi-dimensional Adaptive Sampling and
Reconstruction

!15

Hachisuka et al. [2008]

Slides courtesy: Toshiya Hachisuka

Realistic Image Synthesis SS2018

Temporal Light-Field Reconstruction for
Rendering Distribution Effects

!16

Lehtinen et al. [2011]
Slides courtesy: Jakko Lehtinen

Pinhole image !17

With motion blur and depth of field !18

Requires dense sampling of 5D function:

 Pixel area (2D)
 Lens aperture (2D)
 Time (1D)

Motion blur and depth of field 1 sample per pixel !19

Our reconstruction !20

Pinhole camera model

!21
sensor

pinhole

object

background

Thin lens camera model

sensor

lens

object

background

!22

!23

Depth of field

Depth of field

!24

1 scanline 

!25

Screen x

Lens u

!26

1 pixel

Screen x

Lens u

!27

Lens u

Screen x!28

Light field [Levoy 1996]

∫

Lens u

Screen x!29

Output:
integration over lens

1 pixelMonte Carlo sampling

Screen x

Le
ns

 u

Low sample density leads to noise

!30

Screen x

Le
ns

 u

Need many samples to capture the signal:

computationally expensive

Monte Carlo sampling 1 pixel

!31

!32

Temporal light fields

x

y

v

u

Traditional light field is 4D [Levoy 1996]

x,y over sensor (2D)
u,v over lens (2D)

Add time dimension for
moving geometry (5D)

Screen x

Le
ns

 u

!33

Screen x

Le
ns

 u

!34

The Integrand is Anisotropic

Screen x

Le
ns

 u

[Chai00, Durand05, Hachisuka08, Soler09, Egan09, ...]

!35

Screen x

Le
ns

 u
Multi-dimensional Adaptive Sampling [Hachisuka 08]

!36

Screen x

Ti
m

e
t

Frequency Analysis and Sheared Reconstruction [Egan 09]

!37

Screen x

Le
ns

 u
Our approach

Start with sparse input sampling

!38

Screen x

Le
ns

 u
Our approach

Start with sparse input sampling

Perform dense reconstruction
using sparse input samples

Standard Monte-Carlo integration
using dense reconstruction

!39

Screen x

Le
ns

 u
Our input has slope information

For defocus,
proportional to
inverse depth 1/z [Chai00]  

For motion,
proportional to
inverse velocity 1/v [Egan09]

Easy to output from
any renderer.

!40

What is the
radiance at the
red location?

Use slope to reproject radiance

!41

?
Use slope to reproject radiance

Must account for occlusion

What is the
radiance at the
red location?

!42

Recap: our approach

Start with sparse input sampling

Perform dense reconstruction
using sparse input samples

Standard Monte-Carlo integration
using dense reconstruction

Use slopes to reproject

Account for visibility

!43

Reprojection and filtering

Simplify visibility by reprojecting
into screen space.

Reproject to u, v, t of
reconstruction location.

Pixel filter over visible samples.

!44

Visibility

?

Cluster samples into apparent
surfaces to resolve z-order

SameSurface algorithm

Determining coverage:
Does the apparent surface
cover my reconstruction location?

!45

?

Input:

sparse points with slopes

Visibility: SameSurface

!46

The trajectories of  
samples originating
from a single 
apparent surface
never intersect.  

Visibility: SameSurface

!47

Visibility: SameSurface

!48

Visibility events  
show up as intersections  

background
surface

Visibility: Coverage

Does foreground apparent surface cover reconstruction location?

Search foreground samples for spanning triangle.

foreground
surface R

reconstruction
location

Recap: our approach

Start with sparse input sampling

Perform dense reconstruction
using sparse input samples

Standard Monte-Carlo integration
using dense reconstruction

Use slopes to reproject

Account for visibility

!50

Observations

We only need sample radiance, depth, and velocity (i.e., slopes).
Reconstruction is independent of the original renderer. 

We can discard the scene.  

!51

Observations

We only need sample radiance, depth, and velocity (i.e., slopes).
Reconstruction is independent of the original renderer. 

We can discard the scene.

Need efficient sample search:

Fast motion and large defocus can lead to a single 
sample contributing to hundreds of pixels.  

Build a hierarchy over input samples.
!52

Extension to soft shadows

An area light is very much like a lens.

lens ~ light, sensor ~ virtual plane
Reconstruct z instead of radiance

Egan et al. [2010] reconstruct
far field binary visibility only.

light source
lu coordinate

light source
lx coordinate plane Π

view rays

lig
ht

 ra
ys

object 1

object 2

z

7D path-tracing style reconstruction
avoiding combinatorial explosion

Reconstruct scene point (5D)
Reconstruct shadow z shade (2D) !53

Results

!54

Implementation

Multithreaded CPU  
GPU, excluding hierarchy construction  
 

Common sample buffer format accepts outputs from:  
 PBRT 
 Pixie (Open source RenderMan)  
 Custom ray tracer

Code will be made available  

!55

Input: 16 spp
1072 sec (PBRT) !56

Our result: 16 spp + reconstruction at 128spp
1072 sec (PBRT) + 10 sec (reconstruction) !57

Our result: 16 spp + reconstruction at 128spp
1072 sec (PBRT) + 10 sec (reconstruction)

Input: 16 spp  Our result at 128 spp
using same input 

Reference: 256 spp
(16x time) 

!58

Input: 16 spp
771 sec (PBRT)

!59

Our result: 16 spp + reconstruction at 128spp
771 sec (PBRT) + 10 sec (reconstruction)

!60

Our result: 16 spp + reconstruction at 128spp
771 sec (PBRT) + 10 sec (reconstruction)

Input: 16 spp  Our result at 128 spp
using same input 

Reference: 256 spp
(16x time) 

!61

Comparison to reference

!62

25
16 32 64 128 256

30

35

40

P
S

N
R

 (d
B

)

Number of reconstruction locations

Reconstruction quality (higher is better)

16
Input samples/pixel

8

2
4

1

25
16 32 64 128 256

30

35

40

P
S

N
R

 (d
B

)

Number of reconstruction locations

Reconstruction quality (higher is better)

16
Input samples/pixel

Motion blur and depth of field
1 sample per pixel !63

Our reconstruction !64

Our reconstruction !65

Input: 1 spp  Our result: 1 spp -> 128 spp   Reference 256 spp
(256x time) 

Comparison to Egan et al. [2009]

!66
Egan et al. [2009]
8 samples / pixel

Our method
4 samples / pixel

Reference
256 samples / pixel

Comparison to Egan et al. [2009]

!67
Egan et al. [2009]
8 samples / pixel

Our method
4 samples / pixel

Reference
256 samples / pixel

Soft shadows, 4 spp

!68

7D soft shadows with motion and defocus, 4 spp

!69

Realistic Image Synthesis SS2018

Filtering Monte Carlo Noise From
Random Parameters

!70

Sen and Darabi [2012]

Realistic Image Synthesis SS2018

!71

Realistic Image Synthesis SS2018

High-dimensional Monte Carlo Integration

!72

Realistic Image Synthesis SS2018

!73

Realistic Image Synthesis SS2018

Parameters in Monte Carlo estimator

!74

Random parameters:

Color:

Realistic Image Synthesis SS2018

Random Parameters Classification

!75

Random parameter

for each pixel :

Realistic Image Synthesis SS2018

Gaussian Filtering

!76

Realistic Image Synthesis SS2018

Bilateral Filtering

!77

Realistic Image Synthesis SS2018

Bilateral vs Gaussian Filtering

!78

Realistic Image Synthesis SS2018

Bilateral Filtering of Features

!79

Realistic Image Synthesis SS2018

Bilateral Weights

!80

Realistic Image Synthesis SS2018

Dependency on Random Parameters

!81

Realistic Image Synthesis SS2018

!82

Pixels,Random Params,Features

Realistic Image Synthesis SS2018

!83

Pixels,Random Params,Features

Realistic Image Synthesis SS2018

!84

Pixels,Random Params,Features

The algorithm computes the statistical dependency of (c-f) on the random parameters in (b)

Realistic Image Synthesis SS2018

!85

Random Parameter Filtering

Realistic Image Synthesis SS2018

Random Parameter Filtering

!86

Realistic Image Synthesis SS2018

Statistical Dependency

!87

Mutual information between two random variables:

where, these probabilities are computed over

the neighborhood of samples around a given pixel

Realistic Image Synthesis SS2018

!88

Functional dependency of the k-th scene parameter:

Statistical Dependency

Realistic Image Synthesis SS2018

Statistical Dependency

!89

Realistic Image Synthesis SS2018

Weighted Average Bilateral Filtering

!90

Realistic Image Synthesis SS2018

Results

!91

Realistic Image Synthesis SS2018

!92

Results

Realistic Image Synthesis SS2018

!93

Results

