Reconstruction

Philipp Slusallek Karol Myszkowski Gurprit Singh

Realistic Image Synthesis SS2018

1

- Reconstruction vs Integration
- Multi-dimensional Sampling and Reconstruction
- Temporal Light Field Reconstruction
- Random Parameter Filtering of Monte Carlo Noise

Realistic Image Synthesis SS2018

Reconstruction vs Integration

Slides courtesy: Kartic Subr

Realistic Image Synthesis SS2018

Reconstruction: estimate image samples

ground truth (high-res) image

Page 21 of 72

Naïve method: sample image at grid locations

ground truth (high-res) image

Page 23 of 72

Page 24 of 72

Page 25 of 72

Page 28 of 72

Page 29 of 72

Page 30 of 72

Multi-dimensional Adaptive Sampling and Reconstruction

Hachisuka et al. [2008]

Slides courtesy: Toshiya Hachisuka

Realistic Image Synthesis SS2018

Temporal Light-Field Reconstruction for Rendering Distribution Effects

Lehtinen et al. [2011]

Slides courtesy: Jakko Lehtinen

Realistic Image Synthesis SS2018

16

Pinhole image

Requires dense sampling of 5D function:

Pixel area (2D) Lens aperture (2D) Time (1D)

With motion blur and depth of field

Motion blur and depth of field 1 sample per pixel

Our reconstruction

Party in

Carl Parts

Pinhole camera model

background

object

pinhole

Thin lens camera model

background

object

lens

Depth of field

Depth of field

1 scanline

Lens u

Lens u

Lens u

Light field [Levoy 1996] Lens u

Output: integration over lens

Monte Carlo sampling

Low sample density leads to noise

ens

Monte Carlo sampling

Need many samples to capture the signal: computationally expensive

→ Screen x

ens.

pixel

Temporal light fields

Traditional light field is 4D [Levoy 1996]

x,y over sensor (2D) u,v over lens (2D)

Add time dimension for moving geometry (5D)

Screen x

The Integrand is Anisotropic [Chai00, Durand05, Hachisuka08, Soler09, Egan09, ...]

Screen x

Multi-dimensional Adaptive Sampling [Hachisuka 08] Screen x O

Frequency Analysis and Sheared Reconstruction [Egan 09]

Screen x

Our approach

ens

Start with sparse input sampling

Our approach

Start with sparse input sampling

Perform **dense** reconstruction using sparse input samples

Standard Monte-Carlo integration using dense reconstruction

→ Screen x

Our input has slope information

For defocus, proportional to inverse depth 1/z [Chai00]

For motion, proportional to inverse velocity 1/v [Egan09]

Easy to output from any renderer.

S

→ Screen x

What is the radiance at the red location?

Use slope to **reproject** radiance

What is the radiance at the red location?

Use slope to **reproject** radiance Must account for occlusion

Recap: our approach

Start with sparse input sampling

Perform **dense** reconstruction using sparse input samples

Use slopes to reproject Account for visibility

Standard Monte-Carlo integration using dense reconstruction

Reprojection and filtering

Simplify visibility by reprojecting into screen space.

Reproject to u, v, t of reconstruction location.

Pixel filter over **visible** samples.

Visibility

Cluster samples into **apparent surfaces** to resolve *z*-order

SameSurface algorithm

Determining **coverage**: Does the apparent surface cover my reconstruction location?

Visibility: SameSurface

Input:

sparse points with slopes

Visibility: SameSurface

The trajectories of samples originating from a single **apparent surface** never intersect.

Visibility: SameSurface

Visibility events show up as **intersections**

Visibility: Coverage

Search foreground samples for spanning triangle.

foreground surface

background surface

reconstruction location

Does foreground apparent surface cover reconstruction location?

R

Recap: our approach

Start with sparse input sampling

Perform **dense** reconstruction using sparse input samples

Use slopes to reproject Account for visibility

Standard Monte-Carlo integration using dense reconstruction

Observations

We only need sample radiance, depth, and velocity (i.e., slopes). Reconstruction is **independent** of the original renderer.

We can **discard** the scene.

Observations

We only need sample radiance, depth, and velocity (i.e., **slopes**). Reconstruction is **independent** of the original renderer.

We can **discard** the scene.

Need efficient sample search:

Fast motion and large defocus can lead to a single sample contributing to hundreds of pixels.

Build a **hierarchy** over input samples.

Extension to soft shadows

An **area light** is very much like a **lens**.

lens ~ light, sensor ~ virtual plane Reconstruct **z** instead of radiance

Egan et al. [2010] reconstruct far field **binary visibility** only.

7D path-tracing style reconstruction avoiding combinatorial explosion

Reconstruct scene point (5D) Reconstruct shadow z shade (2D)

Results

Implementation

Multithreaded CPU GPU, excluding hierarchy construction

Common sample buffer format accepts outputs from: PBRT Pixie (Open source RenderMan) Custom ray tracer

Code will be made available

Input: 16 spp 1072 sec (PBRT)

S. INNIA

Our result: 16 spp + reconstruction at 128 spp 1072 sec (PBRT) + 10 sec (reconstruction)

Our result: 16 spp + reconstruction at 128 spp 1072 sec (PBRT) + 10 sec (reconstruction)

Input: 16 spp

Our result at 128 spp using same input

Reference: 256 spp (16x time)

Input: 16 spp 771 sec (PBRT)

Our result: 16 spp + reconstruction at 128spp 771 sec (PBRT) + 10 sec (reconstruction)

Our result: 16 spp + reconstruction at 128 spp 771 sec (PBRT) + 10 sec (reconstruction)

Input: 16 spp

Our result at 128 spp using same input

Reference: 256 spp (16x time)

Comparison to reference

2

Motion blur and depth of field 1 sample per pixel

Our reconstruction

Party in

Carl Parts

Input: 1 spp

Our reconstruction

Our result: 1 spp -> 128 spp

Reference 256 spp (256x time)

Comparison to Egan et al. [2009]

Egan et al. [2009] 8 samples / pixel

Our method 4 samples / pixel

Reference 256 samples / pixel

Comparison to Egan et al. [2009]

Egan et al. [2009] 8 samples / pixel

Our method 4 samples / pixel

Reference 256 samples / pixel

Soft shadows, 4 spp

7D soft shadows with motion and defocus, 4 spp

Filtering Monte Carlo Noise From **Random Parameters**

Realistic Image Synthesis SS2018

Sen and Darabi [2012]

input Monte Carlo (8 samples/pixel)

after RPF (8 samples/pixel)

High-dimensional Monte Carlo Integration

(a) Input MC (8 spp)

(b) Dependency on (u, v) (c) Our approach (RPF)

Parameters in Monte Carlo estimator

Random parameters: $\mathbf{r} = \{r_1, r_2, ..., r_n\}$

Color: $\mathbf{c}_i \leftarrow f(\mathbf{p}_{i,1},\mathbf{p}_{i,2};\mathbf{r}_{i,1},\mathbf{r}_{i,2},\ldots,\mathbf{r}_{i,n})$

screen position

random parameters

Realistic Image Synthesis SS2018

74

Random Parameters Classification

Random parameter for each pixel :

$$\mathbf{x}_i \Leftarrow f(\mathbf{p}_{i,1},\mathbf{p})$$

75

 $\mathbf{p}_{i,2}; \mathbf{r}_{i,1}, \mathbf{r}_{i,2}, \dots, \mathbf{r}_{i,n}$

Realistic Image Synthesis SS2018

Gaussian Filtering

 $\sigma = 4$ $\sigma = 8$

$$GC[I]_{\mathbf{p}} = \sum_{\mathbf{q}\in\mathcal{S}} G_{\sigma}(\|\mathbf{p}-\mathbf{q}\|) I_{\mathbf{q}}, \quad G_{\sigma}(x) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

 $\sigma = 16$

 $\sigma = 32$

16

Realistic Image Synthesis SS2018

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

$$W_{\mathbf{p}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$$
Input

al Filtering

Realistic Image Synthesis SS2018

Bilateral vs Gaussian Filtering

$\sigma_s \backslash \sigma_r$ 0.05

0.2

4

Realistic Image Synthesis SS2018

0.8

GC

78

Bilateral Filtering of Features $w_{ij} = \exp\left[-\frac{1}{2\sigma_{\mathbf{p}}^2} \sum_{1 \le k \le 2} (\bar{\mathbf{p}}_{i,k} - \bar{\mathbf{p}}_{j,k})^2\right] \times$ $\exp\left[-\frac{1}{2\sigma_{\mathbf{c}}^2}\sum_{1\leq k\leq 2}\alpha_k(\bar{\mathbf{c}}_{i,k}-\bar{\mathbf{c}}_{j,k})^2\right]\times$ $\exp\left[-\frac{1}{2\sigma_{\mathbf{f}}^2}\sum_{1\leq k\leq m}\beta_k(\bar{\mathbf{f}}_{i,k}-\bar{\mathbf{f}}_{j,k})^2\right],$

Realistic Image Synthesis SS2018

79

Bilateral Weights

Realistic Image Synthesis SS2018

80

Dependency on Random Parameters

Input Monte Carlo (8 spp)

Dependency of color on random parameters $(D_{\mathbf{c}}^{\mathbf{r}})$

Dependency of color on screen position $(D_{\mathbf{c}}^{\mathbf{p}})$

Fractional dependency on random parameters $(W_{\mathbf{c}}^{\mathbf{r}})$

Reference MC (512 spp)

Realistic Image Synthesis SS2018

Pixels, Random Params, Features

Realistic Image Synthesis SS2018

(b) Random parameters

(c) World space coords.

82

Pixels, Random Params, Features

(d) Surface normals

(e) Texture value

(f) Sample color

Realistic Image Synthesis SS2018

Pixels, Random Params, Features

(a) Screen position

(b) Random parameters

(c) World space coords.

The algorithm computes the statistical dependency of (c-f) on the random parameters in (b)

Realistic Image Synthesis SS2018

Random Parameter Filtering

(a) Reference (b) MC Input

Realistic Image Synthesis SS2018

(d) no clustering (e) no DoF params

20040

(c) RPF

Random Parameter Filtering

(a) $W_{\mathbf{c},k}^{\mathbf{r},1}$ and $W_{\mathbf{c},k}^{\mathbf{r},2}$

(b)

(c) Our output (RPF)

86

Realistic Image Synthesis SS2018

Mutual information between two random variables:

$$\mu(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

where, these probabilities are computed over the neighborhood of samples around a given pixel

Statistical Dependency

Functional dependency of the k-th scene parameter:

$$D_{\mathbf{f},k}^{\mathbf{r}} = \sum_{1 \le l \le n} D_{\mathbf{f},k}^{\mathbf{r},l} = \sum_{1 \le l \le n} \mu(\overline{\mathbf{f}}_{\mathcal{N},k}; \overline{\mathbf{r}}_{\mathcal{N},l})$$

$$\begin{split} D_{\mathbf{f},k}^{\mathbf{p}} &= \sum_{1 \leq l \leq 2} D_{\mathbf{f},k}^{\mathbf{p},l} = \sum_{1 \leq l \leq 2} \mu(\bar{\mathbf{f}}_{\mathcal{N},k}; \bar{\mathbf{p}}_{\mathcal{N},l}), \\ D_{\mathbf{c},k}^{\mathbf{r}} &= \sum_{1 \leq l \leq n} D_{\mathbf{c},k}^{\mathbf{r},l} = \sum_{1 \leq l \leq n} \mu(\bar{\mathbf{c}}_{\mathcal{N},k}; \bar{\mathbf{r}}_{\mathcal{N},l}), \\ D_{\mathbf{c},k}^{\mathbf{p}} &= \sum_{1 \leq l \leq 2} D_{\mathbf{c},k}^{\mathbf{p},l} = \sum_{1 \leq l \leq 2} \mu(\bar{\mathbf{c}}_{\mathcal{N},k}; \bar{\mathbf{p}}_{\mathcal{N},l}). \end{split}$$

Statistical Dependency

88

Realistic Image Synthesis SS2018

$W_{\mathbf{c}}^{\mathbf{f},k} = \frac{D_{\mathbf{c}}^{\mathbf{f},k}}{D_{\mathbf{c}}^{\mathbf{r}} + D_{\mathbf{c}}^{\mathbf{p}} + D_{\mathbf{c}}^{\mathbf{f}}}$

Statistical Dependency $D_{\mathbf{f},k}^{\mathbf{r}} = \sum D_{\mathbf{f},k}^{\mathbf{r},l} = \sum \mu(\bar{\mathbf{f}}_{\mathcal{N},k}; \bar{\mathbf{r}}_{\mathcal{N},l})$ 1 < l < n 1 < l < n

 $1{\leq}k{\leq}3$

 $D_{\mathbf{c}}^{\mathbf{r}} = \sum D_{\mathbf{c},k}^{\mathbf{r}}, \quad D_{\mathbf{c}}^{\mathbf{p}} = \sum D_{\mathbf{c},k}^{\mathbf{p}}, \quad D_{\mathbf{c}}^{\mathbf{f}} = \sum D_{\mathbf{c},k}^{\mathbf{f}},$ $1{\leq}k{\leq}3$ $1 \le k \le 3$

Realistic Image Synthesis SS2018

Weighted Average Bilateral Filtering

 $\mathbf{c}_{i,k}' = rac{\sum_{j \in \mathcal{N}} w_{ij} \mathbf{c}_{j,k}}{\sum_{j \in \mathcal{N}} w_{ij}}$

(a) MC Input (8 spp) (b) Our approach (RPF) (c) $\alpha_k = 0, \beta_k = 0$

Results

91

Realistic Image Synthesis SS2018

Results

(d) $\alpha_k = 1, \beta_k = 0$) (c) $\alpha_k = 0, \beta_k = 0$

(e) $\alpha_k = 0, \beta_k = 1$ (f) $\alpha_k = 1, \beta_k = 1$

Results

