Realistic Image Synthesis

- Lightcuts -

Philipp Slusallek Karol Myszkowski Gurprit Singh

Realistic Image Synthesis SS019 - Lightcuts

Philipp Slusallek

Goals of Lightcuts

- Efficient, accurate complex illumination
- In realistic and complex environments

Environment map lighting & indirect Time 111s

Textured area lights & indirect Time 98s

(640x480, Anti-aliased, Glossy materials)

Motivation

Hierarchies in Global Illumination

- Only used in FE methods so far
- Can greatly improved performance
 - Take advantage of 1/N² power fall-off
 - Group together light from distant objects & handles it together
 - Can reduce computational complexity from O(N²) to O(N)

• Question: How to use them in MC-style algorithms

- Key idea: Sample points generated from lights and from camera
- Could group them hierarchically, if generated in advance
- Would handle illumination of a group as one sample
- Allows adaptive/progressive refinement
- Key issues:
 - How to group: Must have criteria for grouping (e.g. by "similarity")
 - · When to refine: Must have an efficient "oracle"

Lightcuts Problem

Many light samples

Lightcuts Problem

Complex visibility

Lightcuts Problem

Material properties with complex reflection

Key Concepts

- Light Cluster
 - Approximate many lights by a single brighter light (the representative light)

Clustering of Light Samples

• Sources of (many) light samples

- Point lights
- Sampled area lights
- Sampled HDR environment lighting
- Generated secondary lighting samples (VPLs in IGI)

General idea

- Group light samples into binary tree
- Leafs are the input light samples
- Inner nodes combine illumination from their children
 - Choose a representative location from among children
 - Combine and bound attributes
- Illumination uses a *cut* through the tree su
 - · Adaptively combines far away lights into one
 - Samples the integral evenly given bounds on power contribution, solid angle, visibility, and angular falloff

Surface Point

Criteria for Clustering

Contribution from a cluster

- Given terms for material (M), geometry (G), visibility (V) and the intensity (I) of the (clustered) child light samples
- Illumination from the cluster is then given as

$$L_C = \sum_{i \in C} M_i(x_i, \omega_o) G_i(x_i) V_i(x_i) I_i$$

Approximation

However, this is too costly and is approximated as by a representative light sample j

$$\tilde{L}_C \approx M_j(x_j, \omega_o)G_j(x_j)V_j(x_j)\tilde{I}_j \qquad \tilde{I}_j = \sum_{i \in C} I_i$$

- All properties are taken from representative, except light intensity
- Create a full cluster up to a single root node
- Issue
 - Must have some way to bound the error of the approximation

Building the Light Tree

- Lights are split into types: Omni, oriented, and directional lights
 - Build a tree for each (but conceptually one big tree)
 - Directional lights are handled as point lights on a unit sphere
- Each cluster stores
 - Links to two children
 - Representative light (randomly chosen among children, ~ intensity)
 - Total intensity I_C (sum over all children)
 - Axis aligned bounding box
 - Oriented bounding cone (for oriented lights)
- Greedy bottom up build:
 - In each step create cluster that minimizes total cost
- Cost model: $I_C(\alpha_C^2 + c^2(1 \cos \beta_C)^2)$
 - α_C : Diagonal length of bounding box
 - β_C : Half angle of bounding cone (of light directions)
 - c: Constant for relative scaling of spatial/directional data
 - Set to half the scenes Bbox for oriented lights, zero otherwise

Choosing a Cut

General Approach

- Set the cut to be the root node
- Choose the node from the cut with worst error
- Refine this node
 - Replacing it with its two children
- Terminate if relative error is below 1%
 - Can be computed because we have approximated illumination due to existing cut
 - Criterion due to Weber's law
 Relative perception
 - In the paper they use 2% without artifacts

Illumination Equation

Illumination Equation

Illumination Equation

Cluster Approximation

Cluster Error Bound

error
$$\leq M_{ub}G_{ub}V_{ub}\sum_{\text{lights}} I_i$$

Bound each term

- Visibility <= 1 (trivial)</p>
- Intensity is known
- Bound material and geometric terms using cluster bounding volume

Kitchen, 388K polygons, 4608 lights (72 area sources)

Realistic Image Synthesis SS019 – Lightcuts

Philipp Slusallek

Kitchen, 388K polygons, 4608 lights (72 area sources)

Combined Illumination

Lightcuts 128s 4 608 Lights (Area lights only)

Lightcuts 290s 59 672 Lights (Area + Sun/sky + Indirect)

Combined Illumination

Lightcuts 128s 4 608 Lights (Area lights only) Avg. 259 shadow rays / pixel

Lightcuts 290s 59 672 Lights (Area + Sun/sky + Indirect) Avg. 478 shadow rays / pixel (only 54 to area lights)

Extended Versions of Lightcuts

Reconstruction Cuts

- Operates in image space
- Starts Lightcuts at coarse pixel grid
- Interpolates either colors or lighting info, or resamples
- Refines pixel grid where necessary (based on material, shadow info)

Multi-Dimensional Lightcuts

- Realizes that antialiasing, motion blur, etc. require many samples per pixel
 - Inefficient if Lightcut is recomputed for each of them
- Instead build hierarchy of pixel samples and VPLs
 - Needs clever error bounds
- Traverse simultaneously, subdividing either cut based on cost function