Robust Sampling for Progressive Global Illumination

Iliyan Georgiev Philipp Slusallek
Saarland University
DFKI

Outline

1. Motivation
a) Progressive rendering
b) Importance (of) sampling
2. Importance sampling of virtual point lights
3. Importance caching for complex illumination

Ultimate goal

Time: 21 hours

Ultimate goal

photo-realism

Trends

\checkmark Moore's law - better hardware Researchers - better software © "Shrek" trilogy rendering times in CPU hours

We will never be able to render the desired quality in real time.

"Everyone knows Moore's Law predicts that compute power will double every 18 months. A little known corollary is that feature cartoon animation CPU render hours will double every 36 months."

Progressive rendering

* A decent solution
* Quickly gaining popularity
\checkmark Progressively increasing quality (while still)
\checkmark Low-latency interaction
\times Difficult to reuse samples
* Need algorithms that
- Converge \leftarrow ultimate quality
- Have fixed memory footprint \leftarrow limited memory
- Are well parallelizable \leftarrow parallel hardware

Importance (of) sampling

* Only classic brute-force algorithms used in practice
\checkmark Fulfill requirements
×Slow... convergence...
* Tremendous improvements by smarter sampling
- Importance sampling
- Multiple importance sampling (MIS)
- Adaptive sampling

Importance Sampling of Virtual Point Lights

Eurographics 2010
short paper

Motivation

* Instant Radiosity (IR) - two-pass
- Cheap pre-processing
- Expensive rendering
* Previous approaches
- Bidirectional/Metropolis Instant Radiosity [Segovia et al.]
- Difficult to implement
- Multiple sampling strategies
- Many parameters
- Difficult to stratify
- "One-pixel image" assumption

Our method

* Simple extension of IR
- Generate VPLs from light sources only
* Probabilistically accept VPLs
- Proportionally to total contribution
- All VPLs bring the same power to the image
\Rightarrow "One-pixel image" assumption
* Minimum importance storage
- Filter VPLs on the fly

Probabilistic VPL acceptance

* VPL energy

$$
L_{i}=\frac{L_{i}}{p_{i}} p_{i}=\frac{L_{i}}{p_{i}} \int_{0}^{1} \chi_{\left[0, p_{i}\right]}(t) d t
$$

* One-sample Monte Carlo integration with ξ

$$
\widehat{L_{i}}=\left\{\begin{array}{cc}
\frac{L_{i}}{p_{i}}, & \xi<p_{i} \\
0, & \text { else }
\end{array}\right.
$$

* Allows to control VPL density

Choosing the acceptance probability

* Want N VPLs with equal total contribution
- $\Phi_{v}=\frac{\Phi}{N}$
* For each VPL candidate i with energy L_{i}
- Estimate total contribution Φ_{i}
- Russian roulette decision with $p_{i}=\min \left(\frac{\Phi_{i}}{\Phi_{v}}+\varepsilon_{\mathrm{p}}, 1\right)$
- Accept with energy $\frac{L_{i}}{p_{i}}$
- Discard

Estimating Image Contribution

* Computing Φ_{i}

- Create a number of samples from camera rays
- Analogs of importons
- Connect VPLs to camera samples
* Computing Ф
- Progressively
- Set $\Phi=0$
- Loop
- Render frame, compute Φ^{i}
- Accumulate $\Phi=\left(1-\frac{1}{i}\right) \Phi+\frac{1}{i} \Phi^{i}$
- In a single pass - path tracing, using VPLs, etc.

Results

Instant Radiosity
Our Extension (0.07 acceptance)

Results

Average acceptance probability: 0.28

Results

Average acceptance probability: 0.23

Wrap Up

* Simple extension of IR
- Generate VPLs from light sources only
* Probabilistically accept VPLs on the fly
- Fixed minimal additional storage
- Easy to parallelize
* Two parameters
- $\varepsilon_{\mathrm{p}}=0.05$
- Number of camera samples, e.g. 100
* "One-pixel image" assumption

Importance Caching for Complex Illumination

Eurographics 2012
full paper

Motivation

Motivation

* Global illumination still very costly
- Indirect illumination
- Even direct illumination - environment, area lights
* Two basic algorithmic improvements
- Importance sampling
- Better sample distribution (ideally proportional to integrand)
- Higher quality with fewer samples
- Exploiting coherence
- Pixel integrands are often highly correlated
- Amortize sampling effort among pixels
- Fast!

Background
 Importance Sampling

* Global - virtual point lights (VPLs)
- Importance-driven sample generation/filtering
- Find relevant VPLs for the current view point (one-pixel image)
\checkmark Fast - few VPLs
X Suboptimal - VPL importance varies across pixels
* Local (per pixel)
- Construct product PDF specialized for integrand
\checkmark Robust - PDF often matches integrand well
\times Not in the presence of occlusion
X Costly - per-pixel PDF construction (BRDF pre-processing)

Motivation (Single Sample per Pixel)

Perfect PDF

Background
 Exploiting Coherence

* Illumination is often smooth
- Especially indirect
> Correlated pixel integrals
* Filtering
- Idea - share samples among integrals
- Reuse samples by interpolation/filtering
- Irradiance caching, photon mapping
- Preserve discontinuities
- Smooth, low-variance results
- Biased, smeared edges \rightarrow indirect only
- Slow convergence, increased memory usage

Algorithm Overview

* Idea - combine all three
- Unbiased VPL sampling framework
- Shade only few most relevant VPLs
* Approach
- Consider full integrand (visibility)
- Shade all VPLs at few locations
- Reuse VPL evaluations as importance at other locations
* Issue - illumination discontinuities
- Additional more conservative distributions
- Efficient MIS combination at shading points

Algorithm Outline

* Progressive rendering
- Interactive feedback, fixed-memory convergence
* For each frame

1) Create importance records (IR) from camera
2) Create virtual point lights (VPLs)

- Probabilistic rejection (global)

3) Store VPL distributions at each IR (local)
4) Render

- Borrow nearby IR distributions for VPL sampling (coherence)

Preprocess

* VPLs - on light sources and indirect
* IRs store VPL contributions
- Accumulated during VPL generation
* Discard VPLs irrelevant for the image
- Immediately after generation
- Subset of IRs for contribution estimate
- Halton sequence periodicity
* Accumulate VPL contribution to IRs

Rendering

* For each pixel shading point
- Find nearest IRs
- Use IR distributions defined for VPL sampling
* Robust sampling if at least one IR correlates
* Increased variance when all IRs irrelevant
- Identify causes for VPL contribution changes
- Additional, increasingly conservative distributions
* Many strategies - combine efficiently
- Bilateral MIS combination framework

Sampling distributions

* Four sampling distributions at each IR

\mathcal{B} : Bounded

U: Unoccluded

\mathcal{C} : Conservative

Distribution Combination Horizontal Combination

* Matrix structure
* Distributions often correlate among IRs
- Combine first horizontally
- Balance heuristic
- Corresponds to mixture
- Directly sample mixture
> Collapse columns into one

Distribution Combination Vertical Combination

* Balance/power heuristics suboptimal
* Novel α-max combination heuristic
- Prioritize distributions: $\mathcal{F}, \mathcal{U}, \mathcal{B}, \mathcal{C}$
- Define confidences: $\alpha_{\mathcal{F}}, \alpha_{U}, \alpha_{\mathcal{B}}, \alpha_{\mathcal{C}}$
- Discard low-probability samples
- If $p_{\mathcal{F}}(x)<\alpha_{u} p_{u}(x)$

* Distribution optimization
- Apply heuristic at each IR
> Exactly one distribution is non-zero for each VPL

Results

Study Hall (diffuse)

Technique comparison

$\mathcal{F} \mathcal{B} \mathcal{B}^{\alpha}$ fractional contributions

Results

Numerical tests

Results

Glossy

Results

Preview quality (0.5 FPS)

Summary

* Exploiting coherence in an unbiased way
- Can capture discontinuities
- Only error is noise (and VPL clamping)
- Specialized sampling techniques
* All VPL types handled simultaneously
* Progressive rendering
- First good approximation within a second
- Full convergence with fixed memory footprint

