Denoising Algorithms: Path to Neural Networks II

Image courtesy Vogel et al. [2018]

Philipp Slusallek Karol Myszkowski **Gurprit Singh**

Recap

Realistic Image Synthesis SS2018

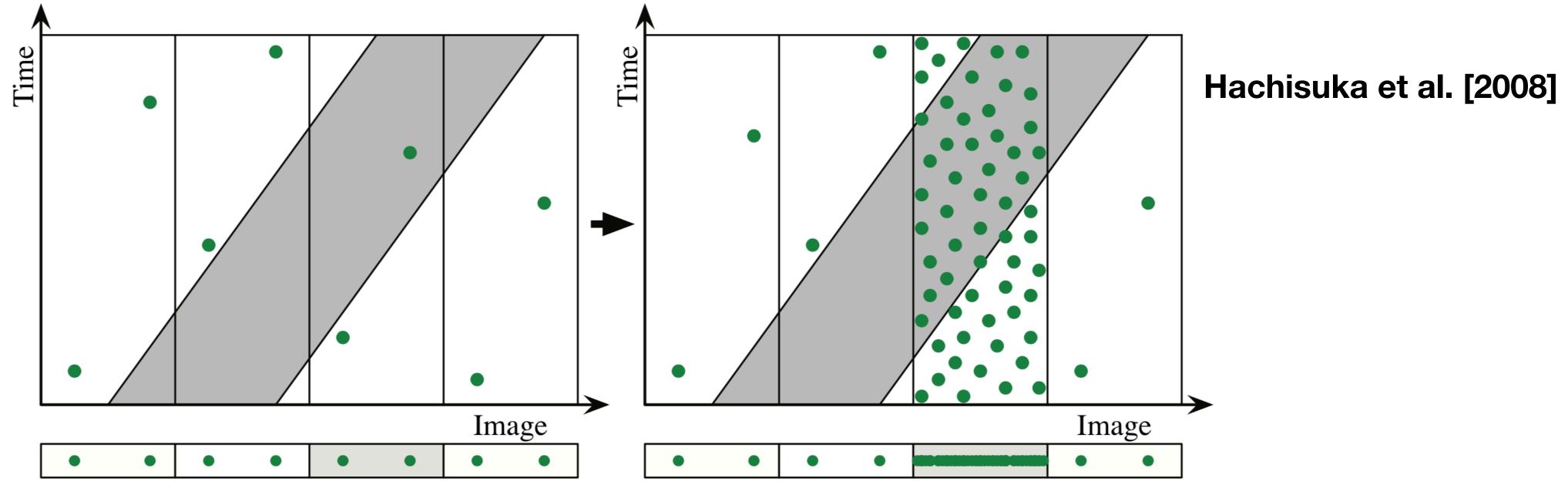


Image-space Adaptive Sampling

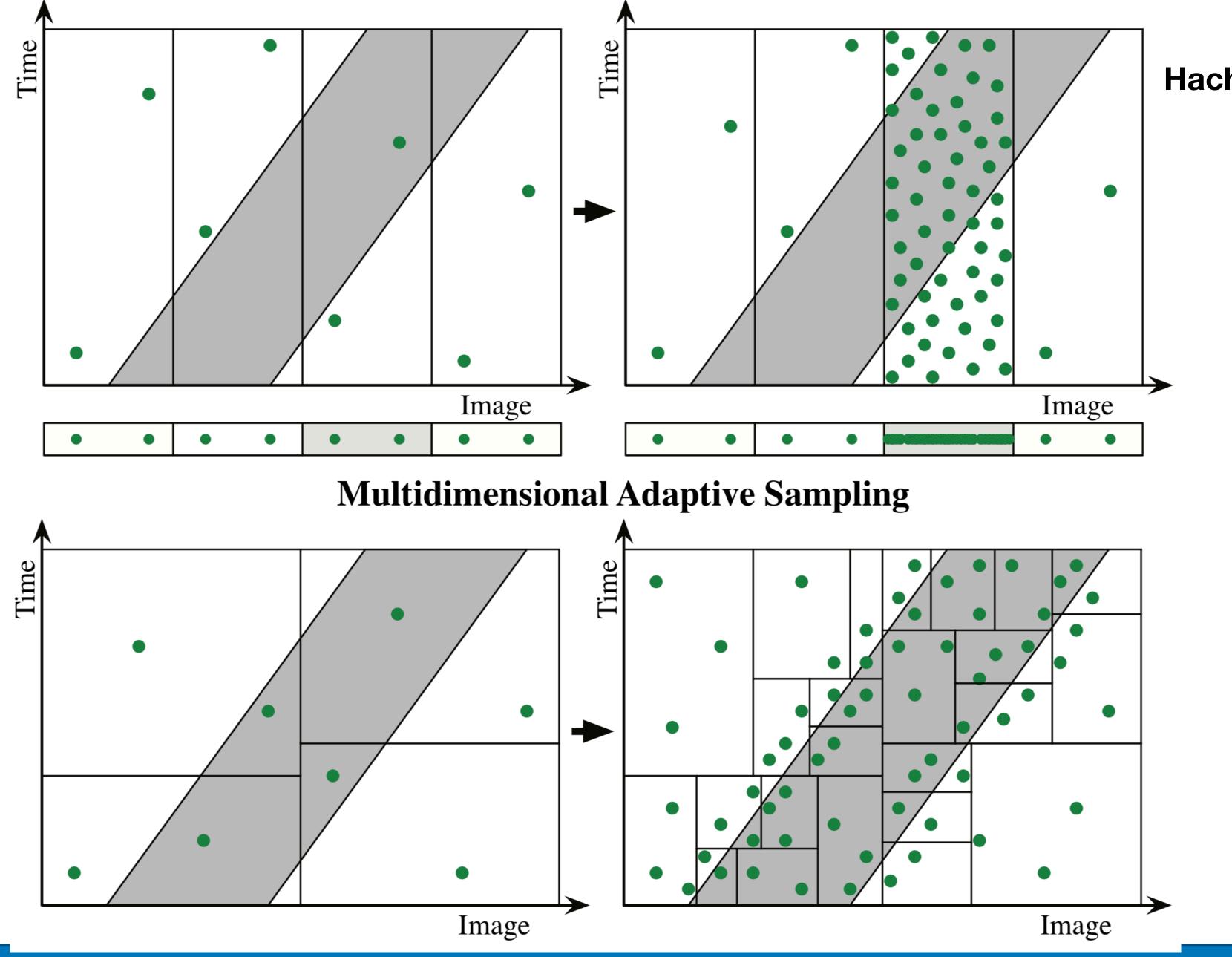
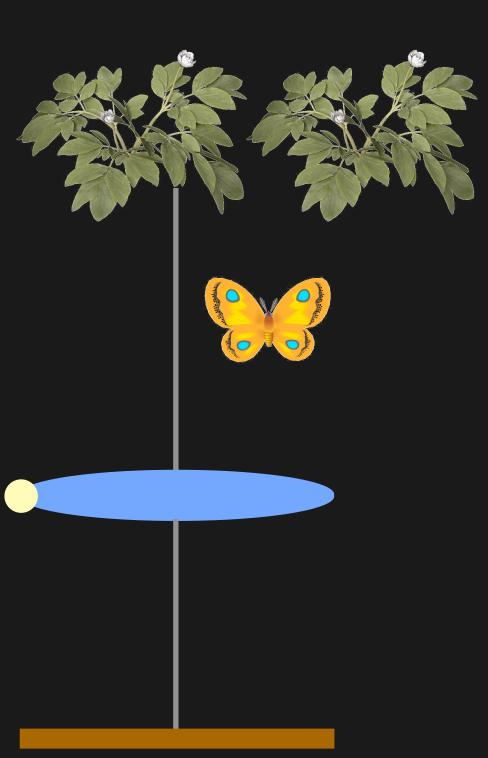


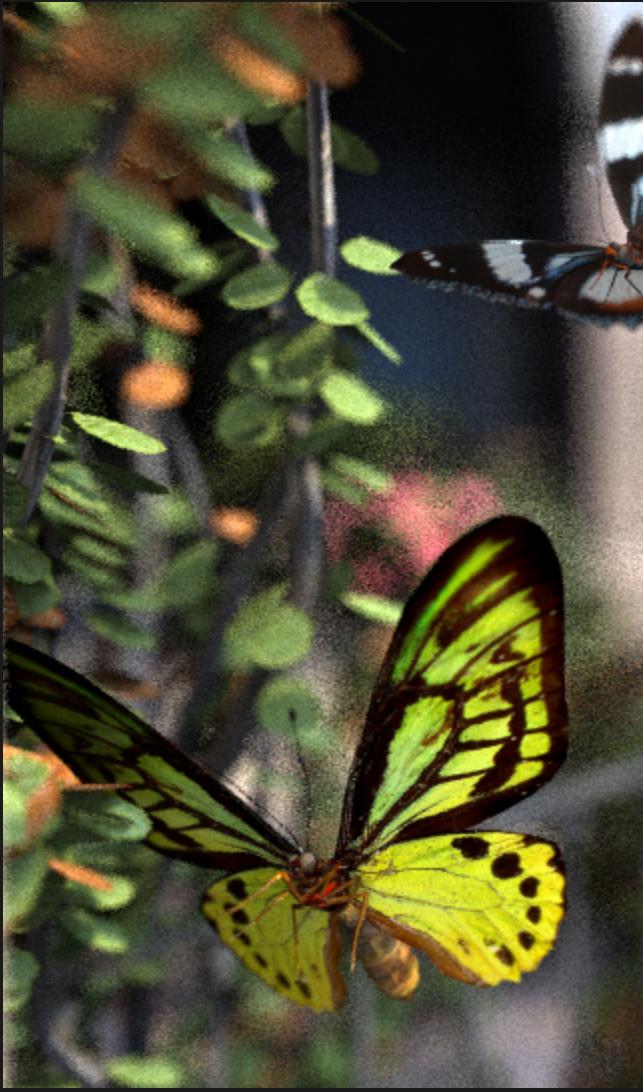
Image-space Adaptive Sampling

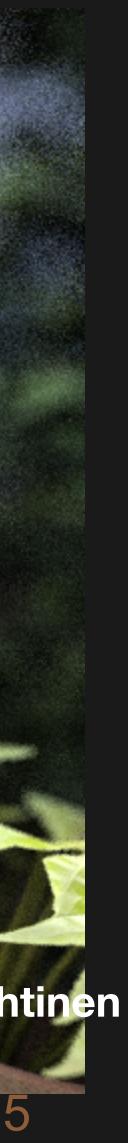
Hachisuka et al. [2008]

Realistic Image Synthesis SS2018

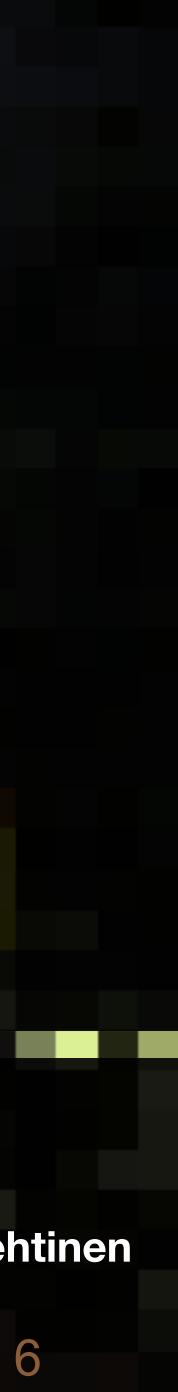
Depth of field







1 scanline



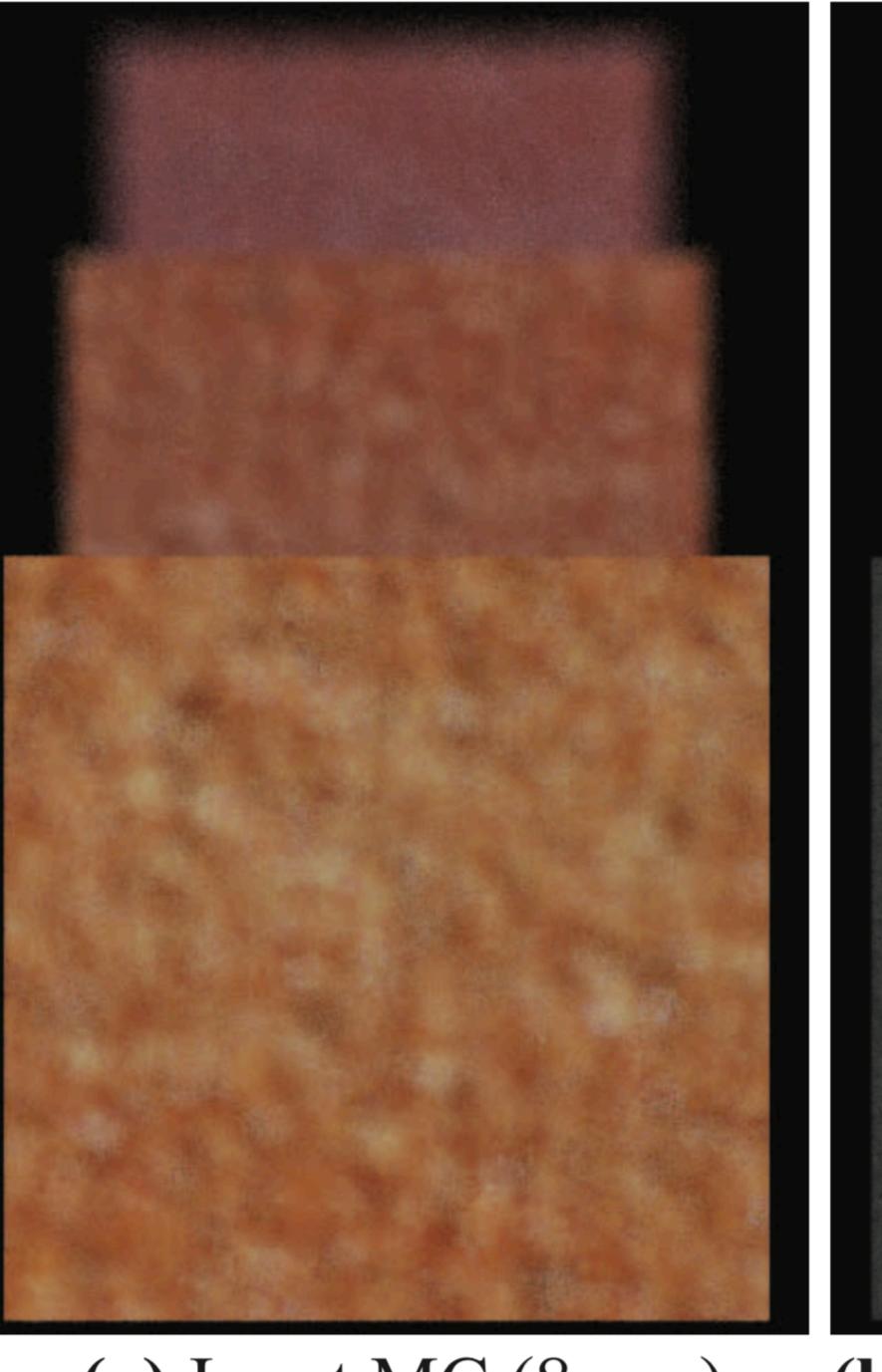
Lens u

Visibility: SameSurface

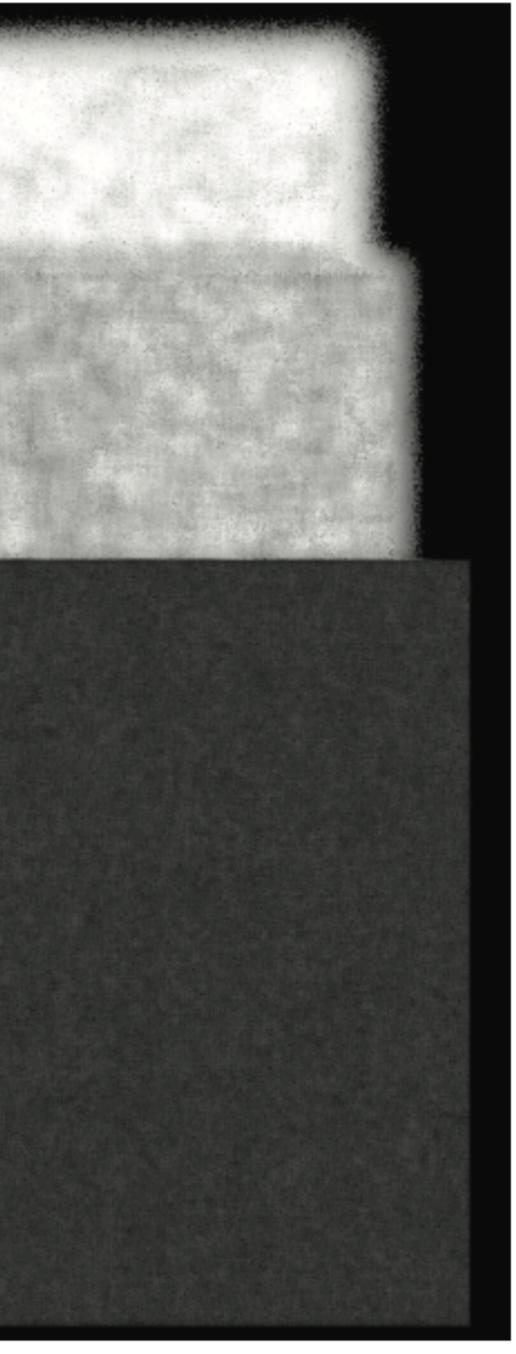
The trajectories of samples originating from a single apparent surface never intersect.

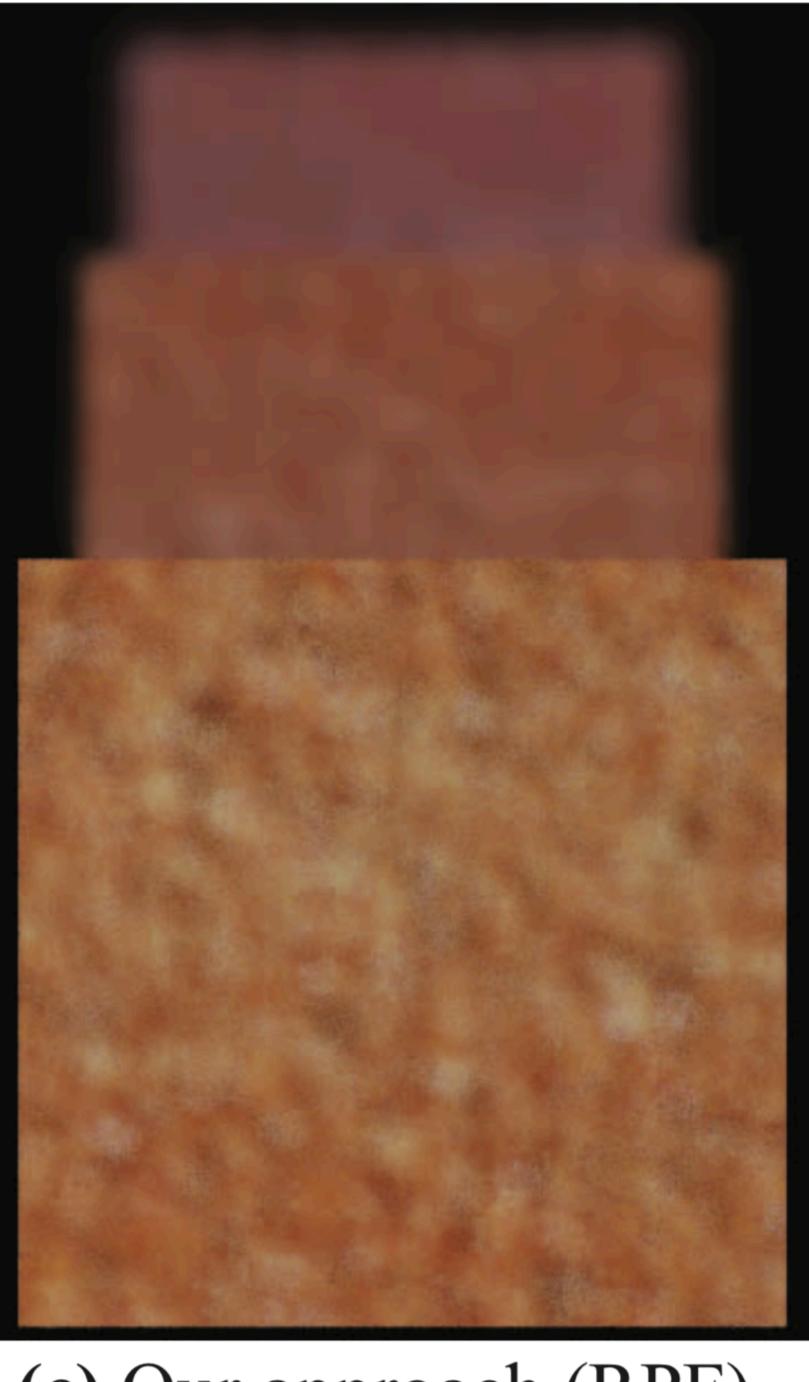
input Monte Carlo (8 samples/pixel)

after RPF (8 samples/pixel)



(a) Input MC (8 spp)



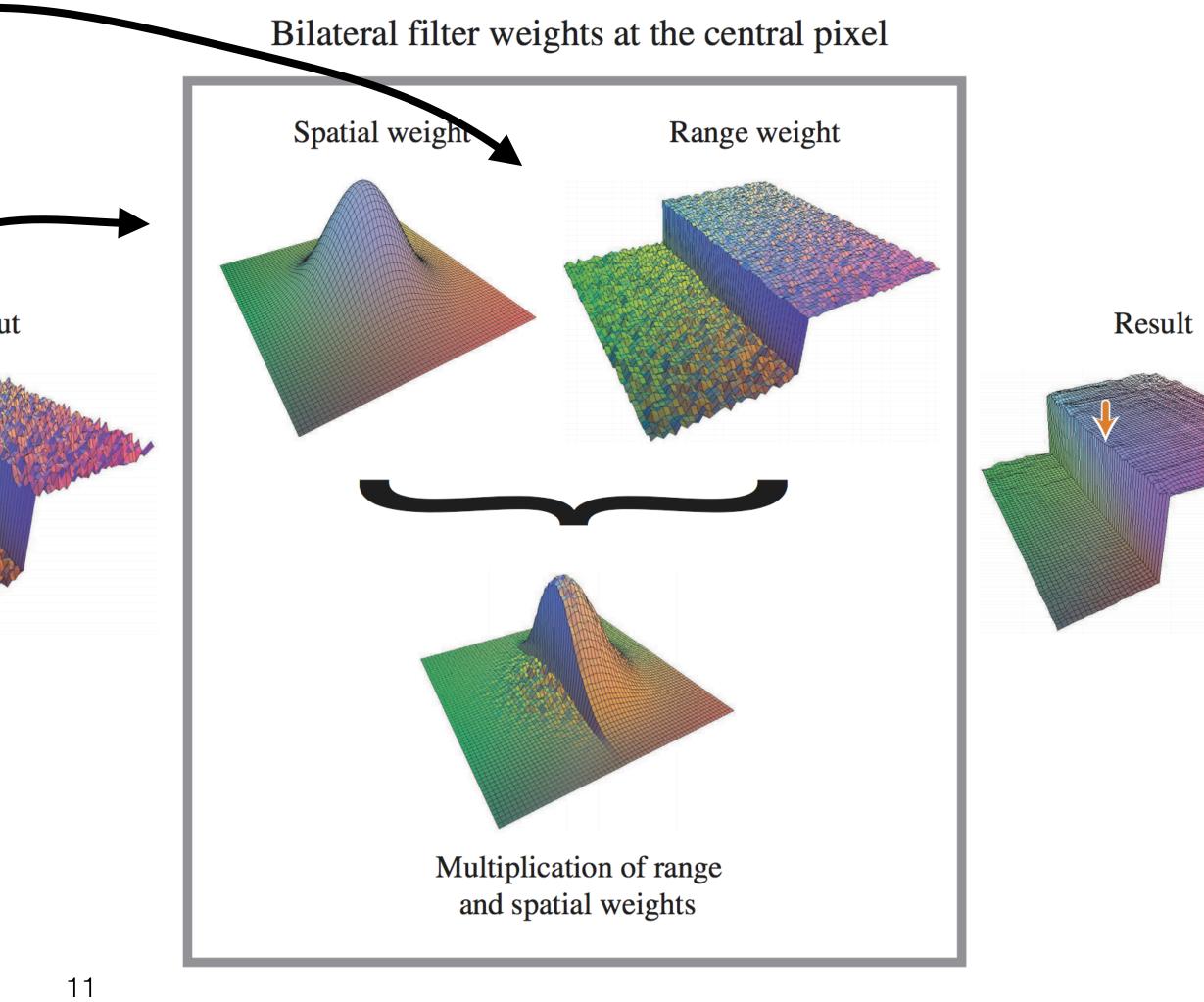


(b) Dependency on (u, v) (c) Our approach (RPF)

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

$$W_{\mathbf{p}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$$
Input

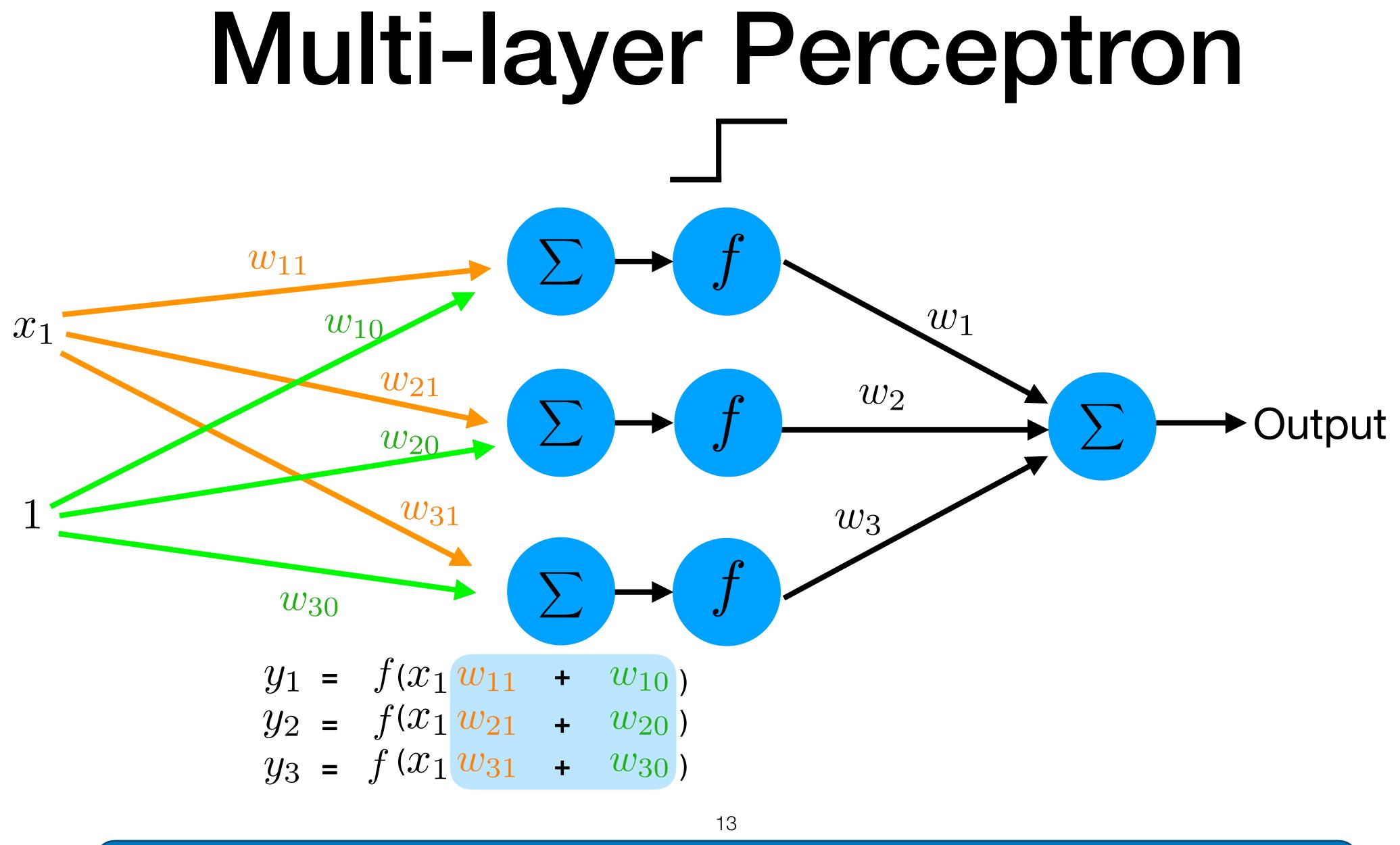
al Filtering



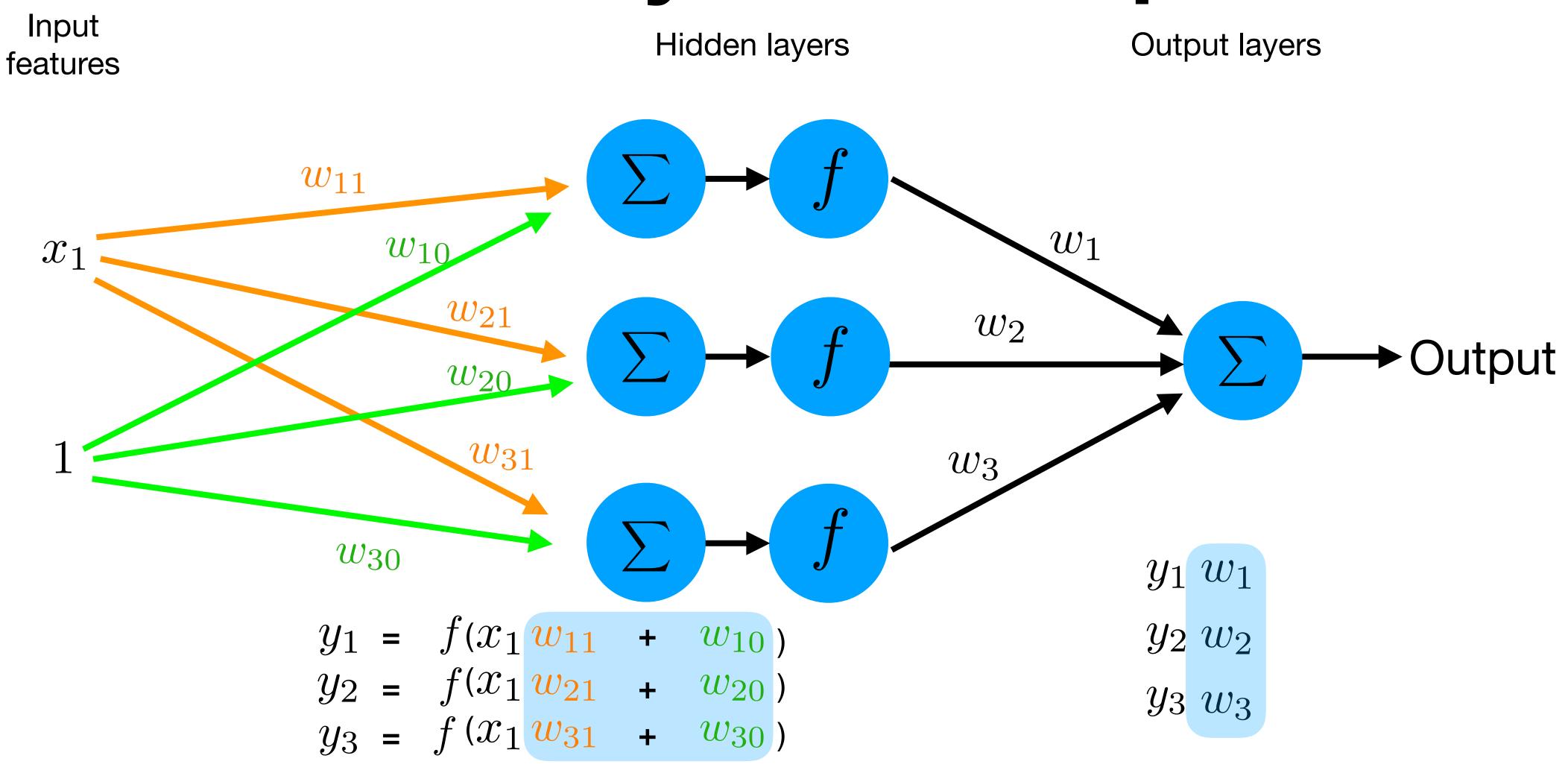
Realistic Image Synthesis SS2018

Bilateral Filtering of Features $w_{ij} = \exp\left[-\frac{1}{2\sigma_{\mathbf{p}}^2} \sum_{1 < k < 2} (\bar{\mathbf{p}}_{i,k} - \bar{\mathbf{p}}_{j,k})^2\right] \times$ $\exp\left[-\frac{1}{2\sigma_{\mathbf{c}}^2}\sum_{1 < k < 2} \alpha_k (\bar{\mathbf{c}}_{i,k} - \bar{\mathbf{c}}_{j,k})^2\right] \times$ $\exp\left[-\frac{1}{2\sigma_{\mathbf{f}}^2}\sum_{1\leq k\leq m}\beta_k(\bar{\mathbf{f}}_{i,k}-\bar{\mathbf{f}}_{j,k})^2\right],$

Realistic Image Synthesis SS2018

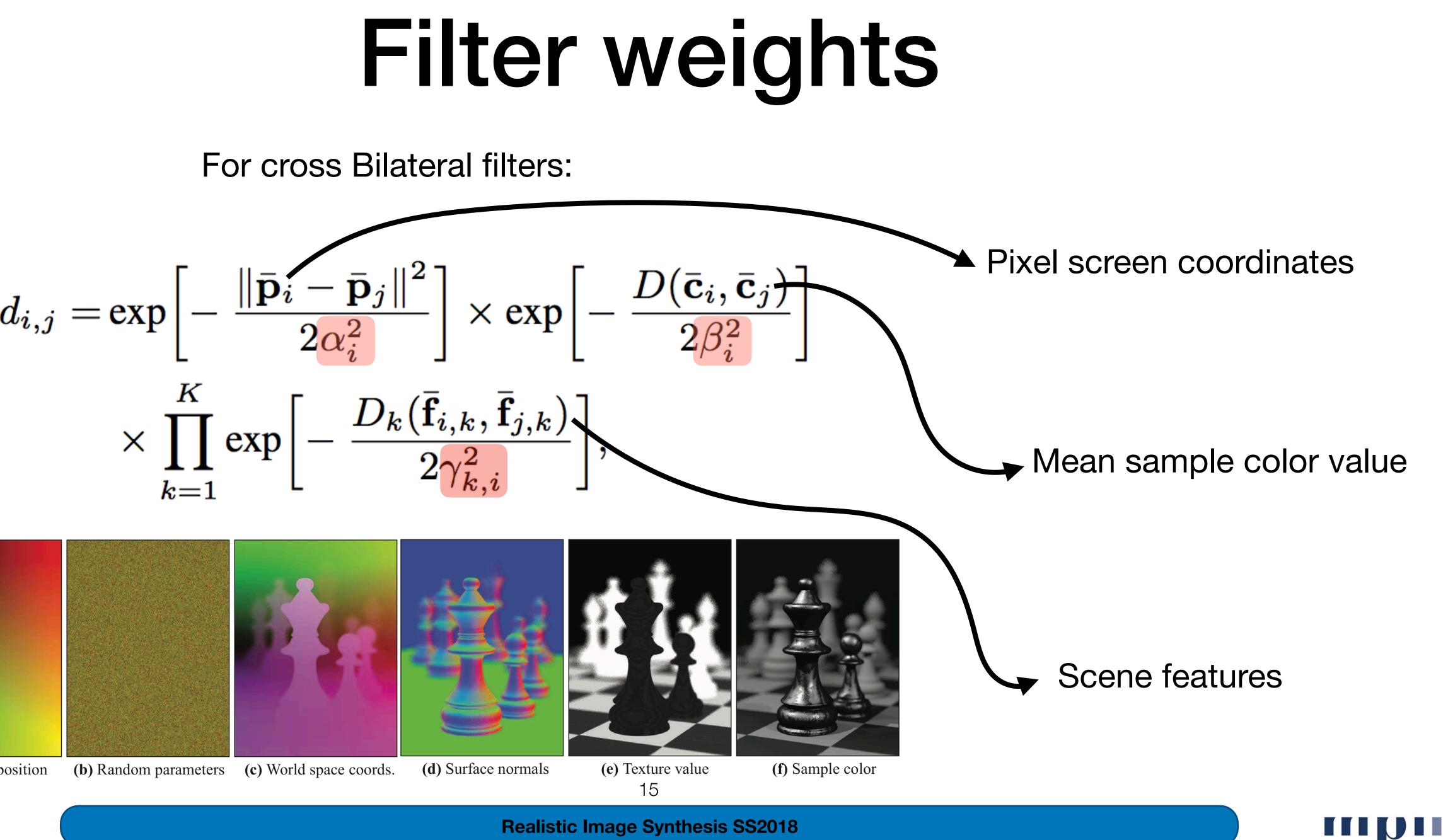


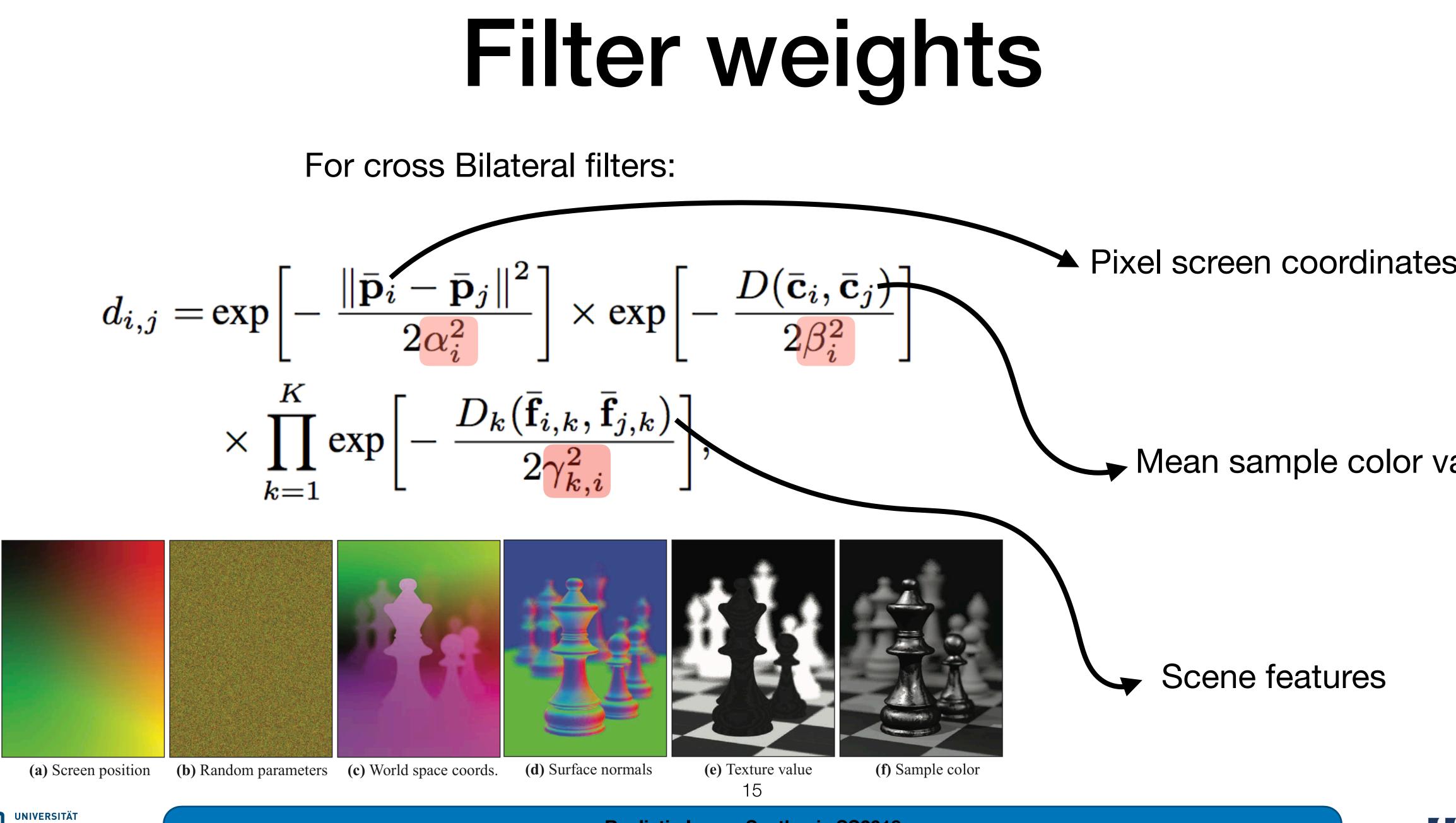
Multi-layer Perceptron



14

Realistic Image Synthesis SS2018





Our result with a cross-bilateral filter (4 spp)

Basics of Neural Networks

Each network has a forward pass and a backward (back-propagation) pass.

All components of the network must be differentiable.

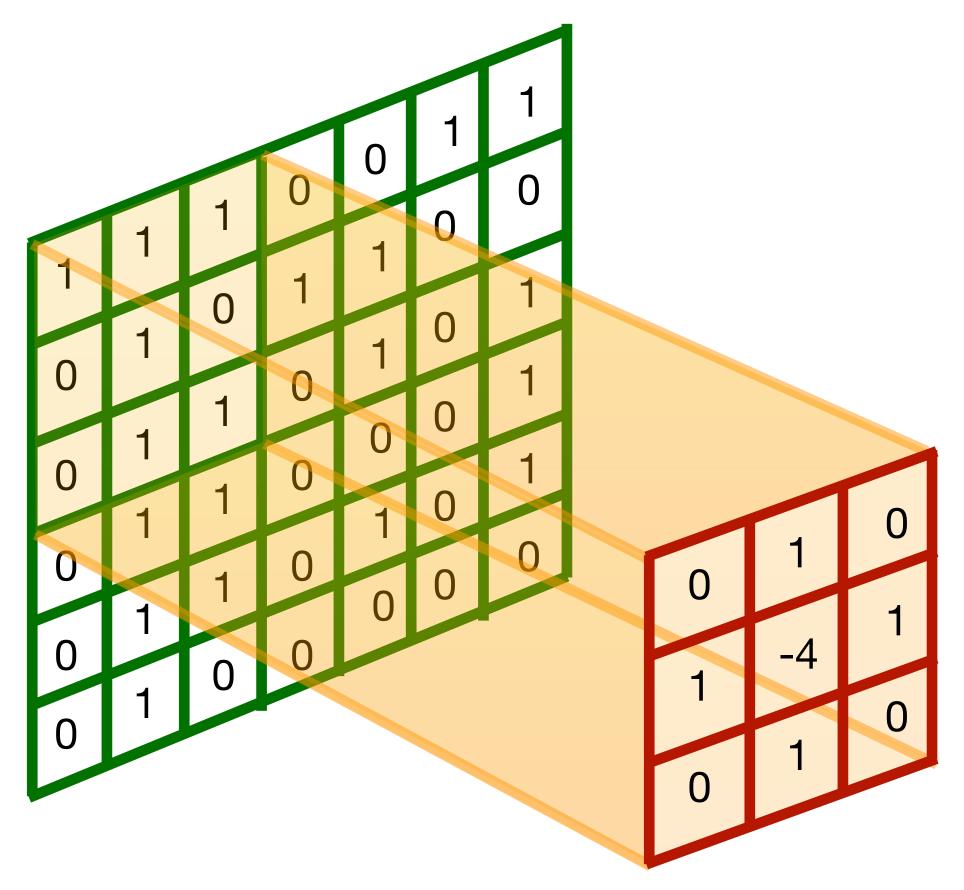
Differentiability is essential for back-propagation of error.

Realistic Image Synthesis SS2019

Introduction to CNNs

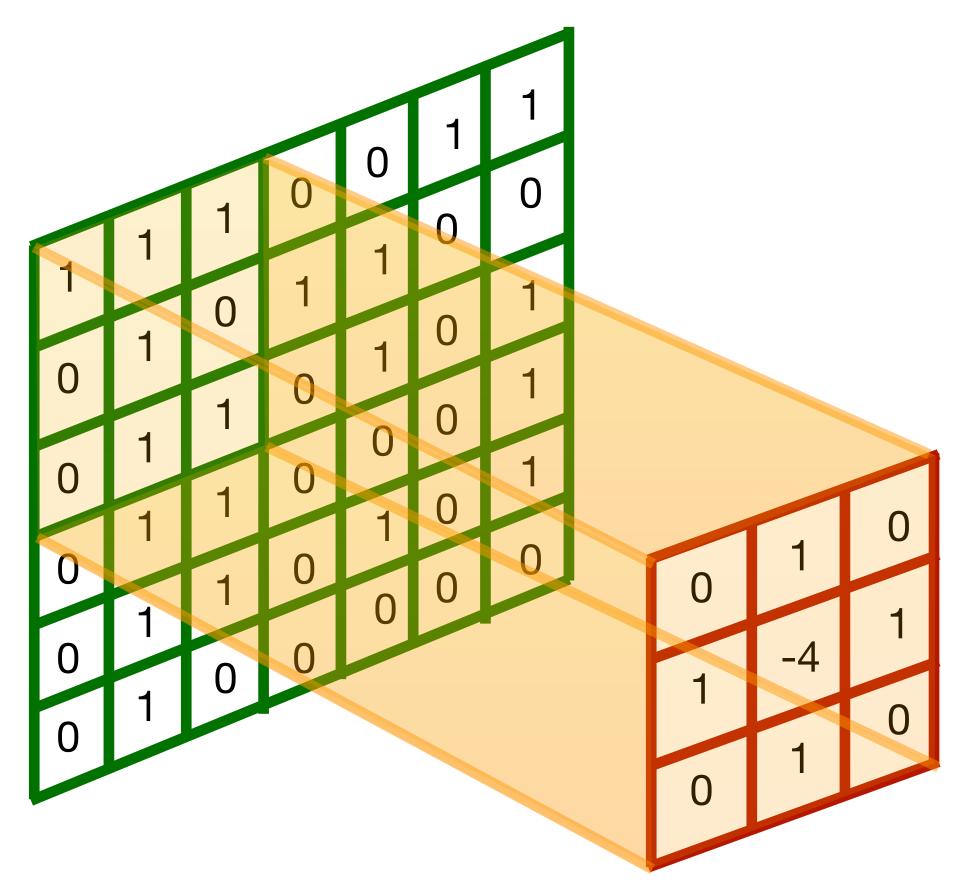
Kernel Predicting Denoising

Sample-based MC Denoising



No zero padding

Convolution

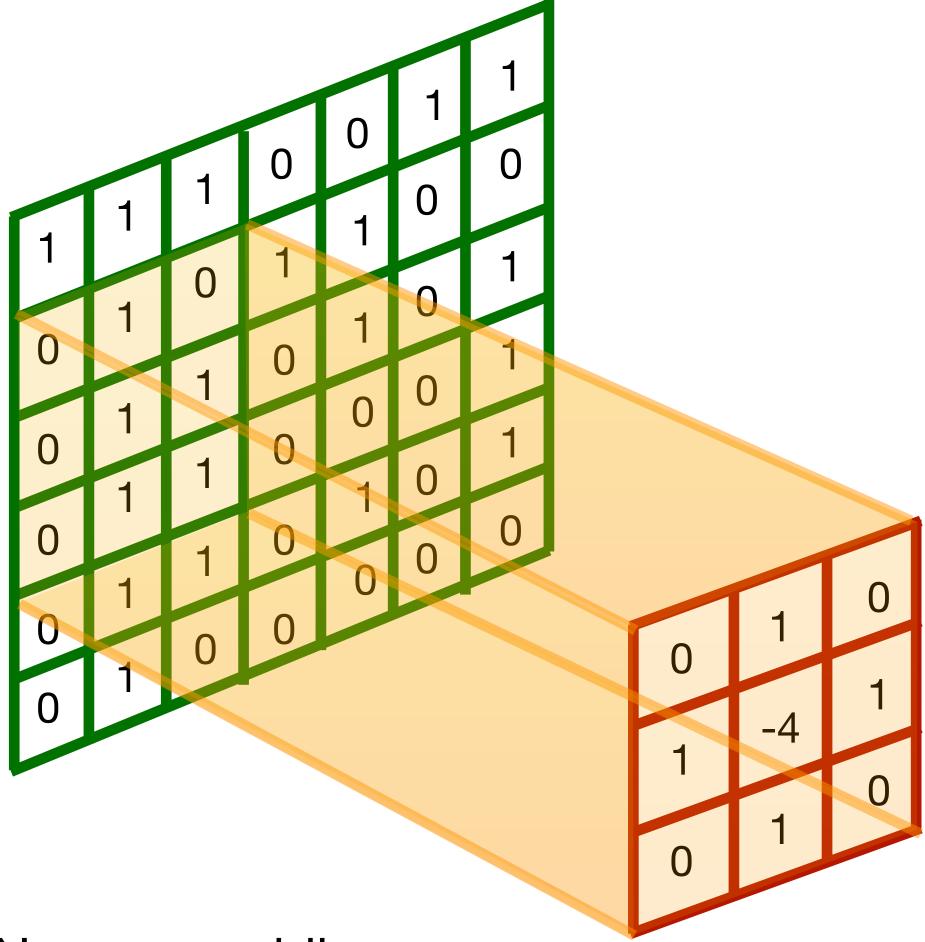


No zero padding

Stride-1 Convolution

-2	4	3	-2

20

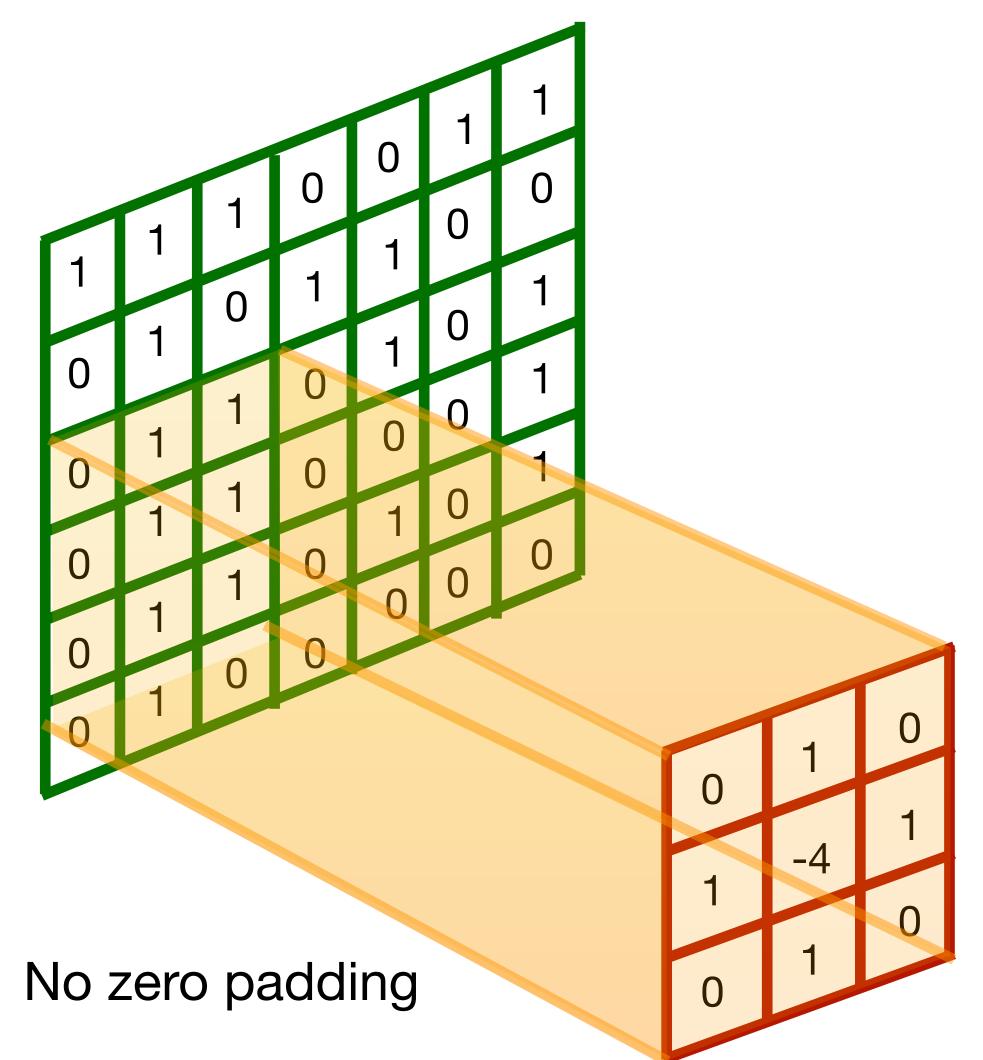


No zero padding

Stride-1 Convolution

-2	4	3	-2
-1	-2	3	-3

21



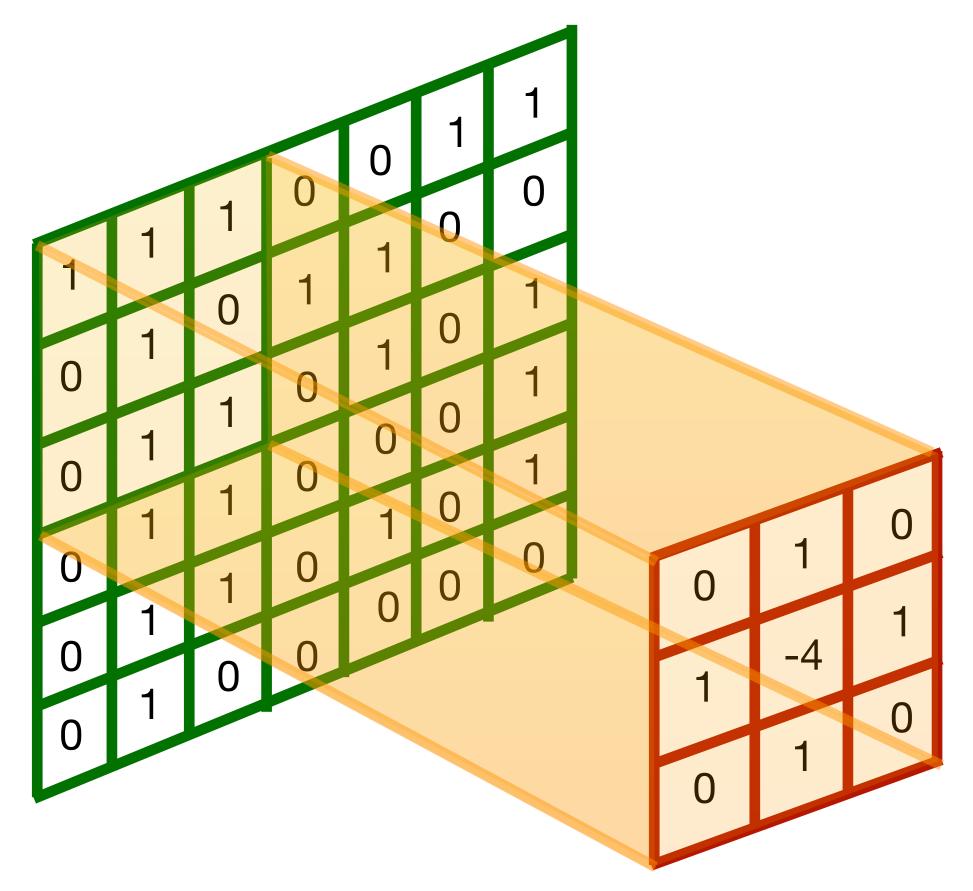
Stride-1 Convolution

-2	4	3	-2
-1	-2	3	-3
-1	-2	1	1

0

22

Realistic Image Synthesis SS2019



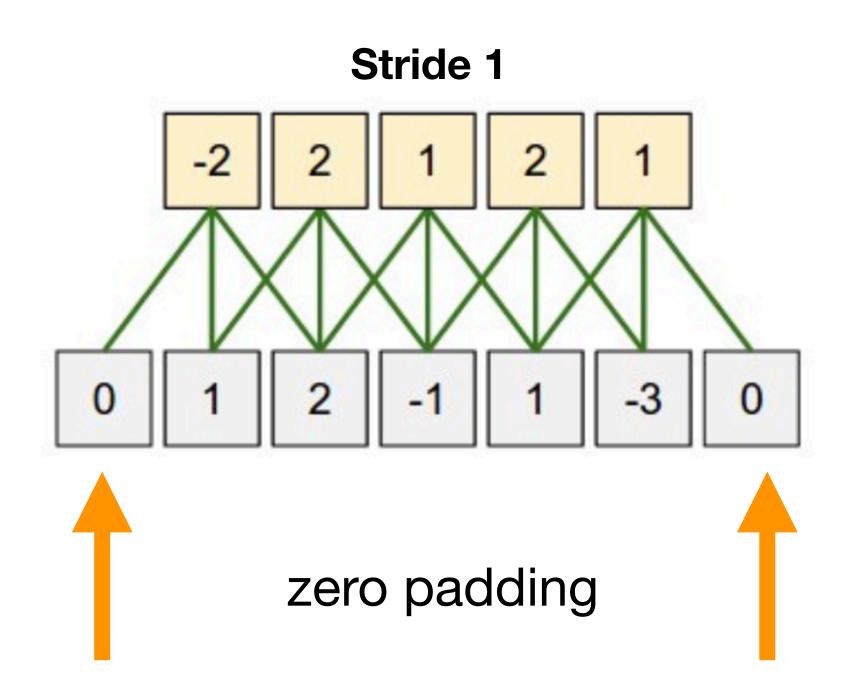
Stride-2 Convolution

-2	3	-2

23

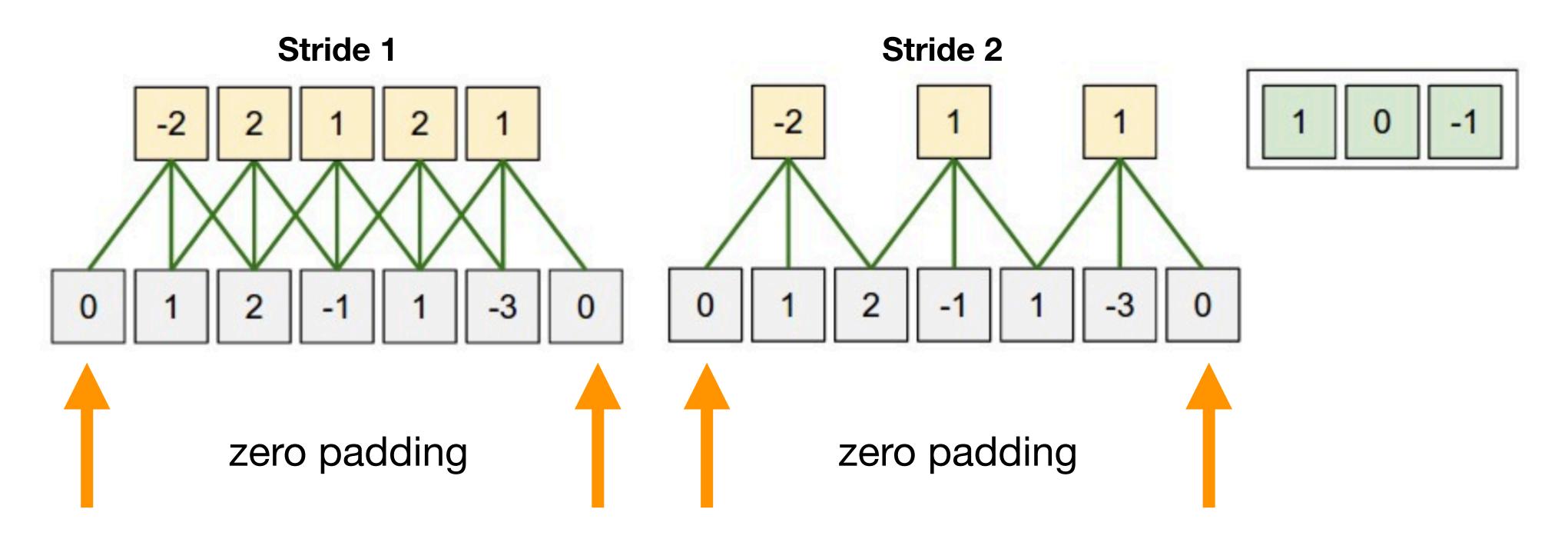
Zero Padding and Strides

1D image to illustrate the strides and zero padding



24

1D image to illustrate the strides and zero padding



Strides

Realistic Image Synthesis SS2019

Max Pooling / Down Sampling

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

6	8
3	4

26

Overview on Convolutional Neural Networks

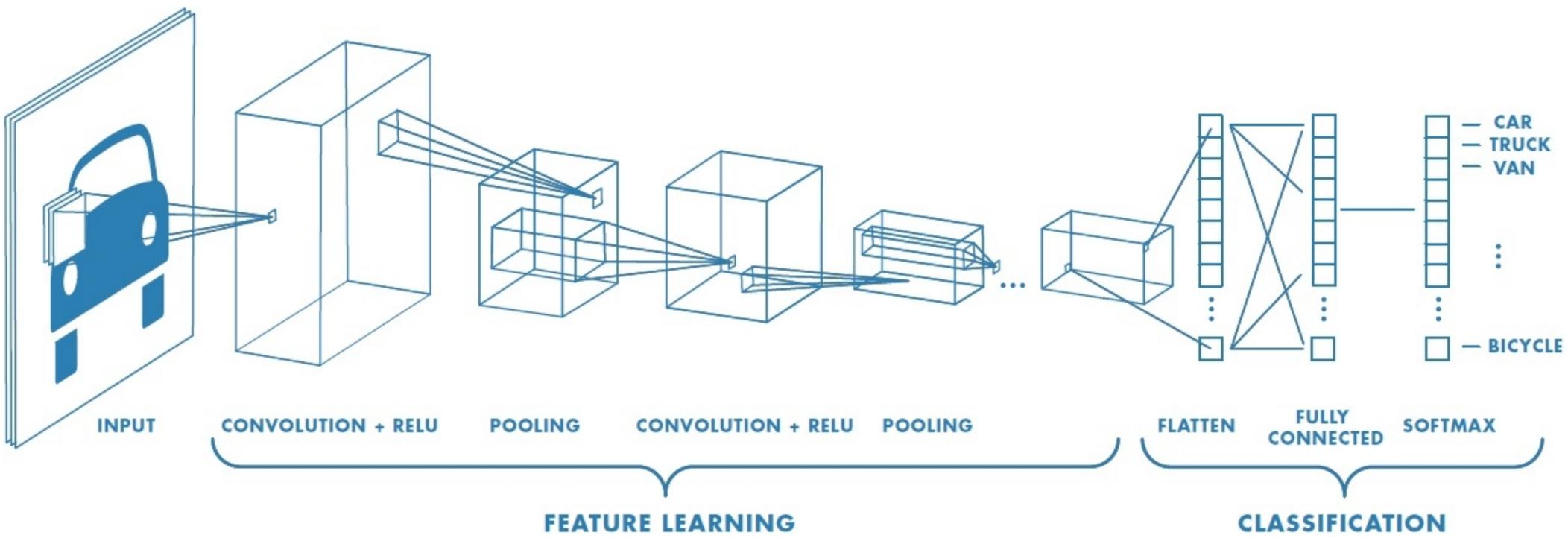


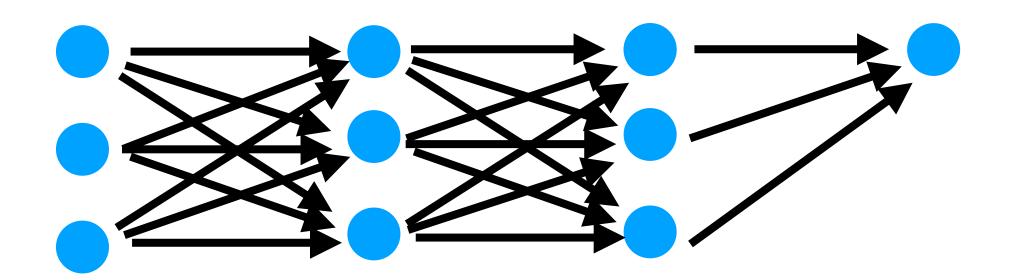
Image Courtesy: Mathworks (online tutorial)

Multi-layer Perceptron vs. CNNs

Realistic Image Synthesis SS2018

Multi-layer Perceptron vs. CNNs

Multi-layer perceptron

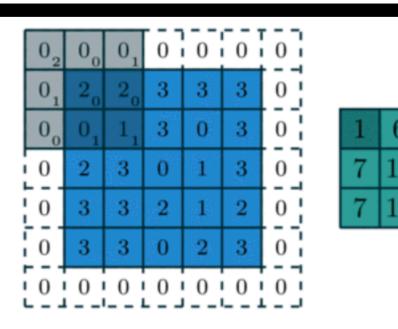


All nodes are fully connected in all layers

In theory, should be able to achieve good quality results in small number of layers.

Number of weights to be learnt are very high

CNNs



Weights are shared across layers

Requires significant number of layers to capture all the features (e.g. Deep CNNs)

Relatively small number of weights required

Introduction to CNNs

Kernel-Predicting Denoising

Kernel-Predicting Networks for Denoising Monte-Carlo Renderings

Realistic Image Synthesis SS2018

Bako et al. [2017]

Limitations of MLP based Denoiser

- Kernel was pre-selected to be joint bilateral filter
 - Unable to explicitly capture all details
 - lacked flexibility to handle wide range of MC noise in production scenes

Fixed

- can cause unstable weights causing bright ringing and color artifacts

Too many parameters to optimize

Requirements

- The function must be flexible to capture complex relationship between input data and reference colors over wide range of scenarios.
- Choice of loss function is crucial. Should capture perceptual aspects of the scene.

To avoid overfitting, large dataset required

Denoising a raw, noisy color buffer causes overblurring

- difficulty in distinguishing scene details and MC noise

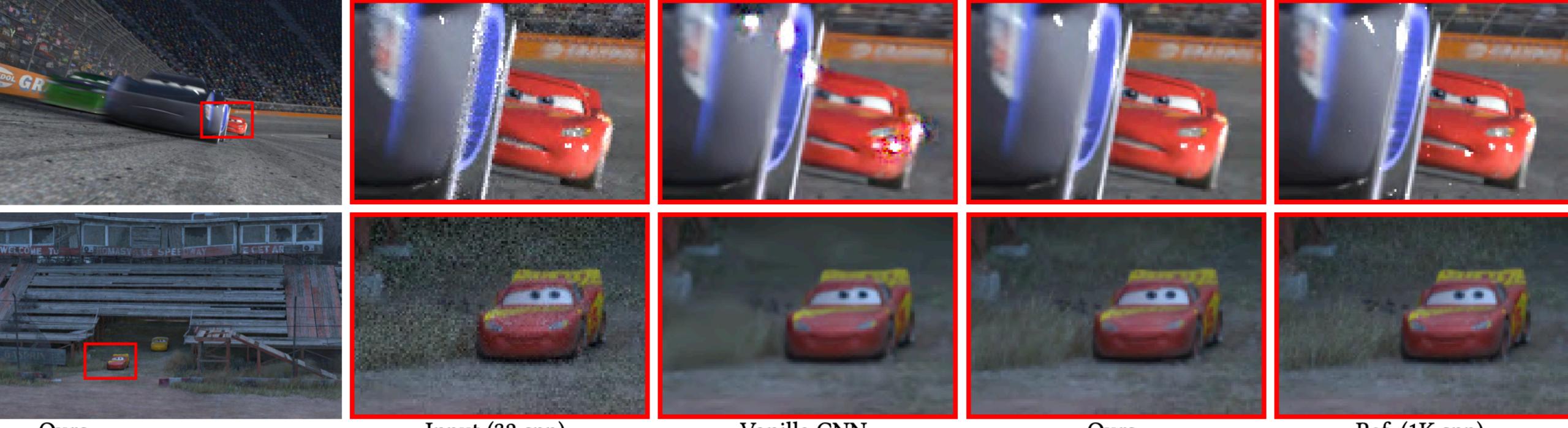
High dynamic range

Using a Vanilla CNN

- can cause unstable weights causing bright ringing and color artifacts

Realistic Image Synthesis SS2019

Vanilla CNN



Ours

Input (32 spp)

Realistic Image Synthesis SS2019

Vanilla CNN

Ours

Ref. (1K spp)

Denoising Model $\widehat{\boldsymbol{\theta}}_p = \operatorname*{argmin}_{\boldsymbol{\theta}} \ell(\overline{\mathbf{c}}_p, g(\mathbf{X}_p; \boldsymbol{\theta}))$ Denoised function with parameters θ Reference image $\ell(\overline{\mathbf{c}}, \widehat{\mathbf{c}})$

 $\widehat{\mathbf{c}}_p = g(\mathbf{X}_p; \widehat{\boldsymbol{\theta}}_p)$

Denoised value

Realistic Image Synthesis SS2019

Loss function

Computational Model

$$\widehat{\boldsymbol{\theta}}_{p} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{q \in \mathcal{N}(p)} \left(\mathbf{c}_{q} - \boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\mathbf{x}_{q}) \right)^{2} \boldsymbol{\omega}(\mathbf{x}_{p}, \mathbf{x}_{q})$$
Neighborhood

$$\widehat{\mathbf{c}}_p = g(\mathbf{X}_p; \widehat{\boldsymbol{\theta}}_p)$$

Denoised value

$$\widehat{\mathbf{c}}_p = \widehat{\boldsymbol{\theta}}_p^\top \phi(\mathbf{x}_p)$$

Final denoised value

$$\phi: \mathbb{R}^{3+\bar{D}} \to \mathbb{R}^{\bar{M}}$$

 $\omega(\mathbf{x}_p, \mathbf{x}_q)$ Kernel weights

37

Direct Prediction Network

Direct prediction convolution network: outputs denoised image

$\widehat{\mathbf{c}}_p = g_{\text{direct}}$

$$\mathbf{z}_{t}(\mathbf{X}_{p};\boldsymbol{\theta}) = \mathbf{z}_{p}^{L}$$

Direct Prediction Network

Direct prediction convolution network: outputs denoised image

$$\widehat{\mathbf{c}}_p = g_{\text{direct}}(\mathbf{X}_p; \boldsymbol{\theta}) = \mathbf{z}_p^L$$

Issues:

The constrained nature and complexity of the problem makes optimization difficult.

The magnitude and variance of stochastic gradients computed during training can be large, which slows convergence of training loss.

Kernel Prediction Network

Kernel prediction convolution network: outputs learned kernel weights

 $w_{pq} = \frac{1}{\sum_{q' \in Q}}$

Denoised color values:

 $\widehat{\mathbf{c}}_p = g_{\text{weighter}}$

$$\begin{split} \exp([\mathbf{z}_{p}^{L}]_{q}) & 0 \leq w_{pq} \leq 1 \\ \in \mathcal{N}(p) \exp([\mathbf{z}_{p}^{L}]_{q'}) & \text{Softmax activation to enform on the set of the set$$

$$_{\mathrm{ed}}(\mathbf{X}_{p};\boldsymbol{\theta}) = \sum_{q \in \mathcal{N}(p)} \mathbf{c}_{q} w_{pq}$$

40

Kernel Prediction Network

$$w_{pq} = \frac{\exp([\mathbf{z}_{p}^{L}]_{q})}{\sum_{q' \in \mathcal{N}(p)} \exp([\mathbf{z}_{p}^{L}]_{q'})}$$
$$0 \le w_{pq} \le 1$$

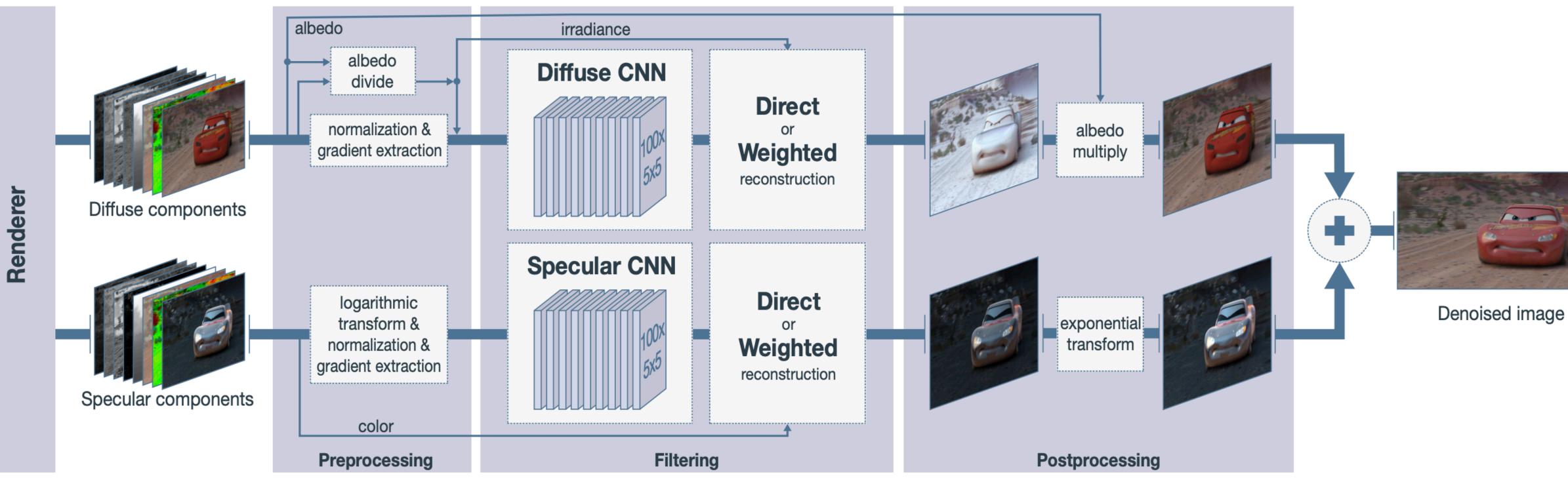
Final color estimate always lies within the convex hull of the respective neighborhood (avoid color shifts).

Ensures well-behaved gradients of the error w.r.t the kernel weights

Realistic Image Synthesis SS2019

 $\widehat{\mathbf{c}}_p = g_{\text{weighted}}(\mathbf{X}_p; \boldsymbol{\theta}) = \sum_{q \in \mathcal{N}(p)} \mathbf{c}_q w_{pq}$

Proposed Architecture



Realistic Image Synthesis SS2019

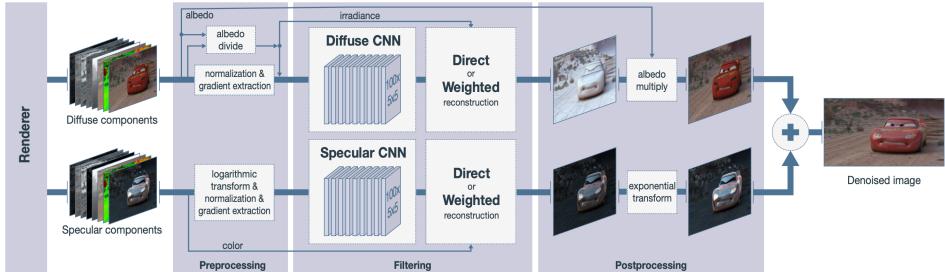
Diffuse/Specular components

Each component is denoised separately

Diffuse components are well-behaved and typically has small ranges

Specular components are challenging due to high dynamic ranges: uses logarithmic transform

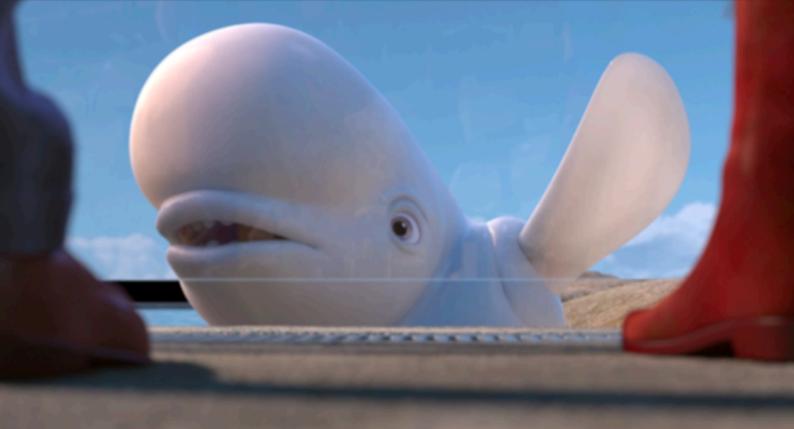
 $\mathbf{c}_{\text{specular}} =$

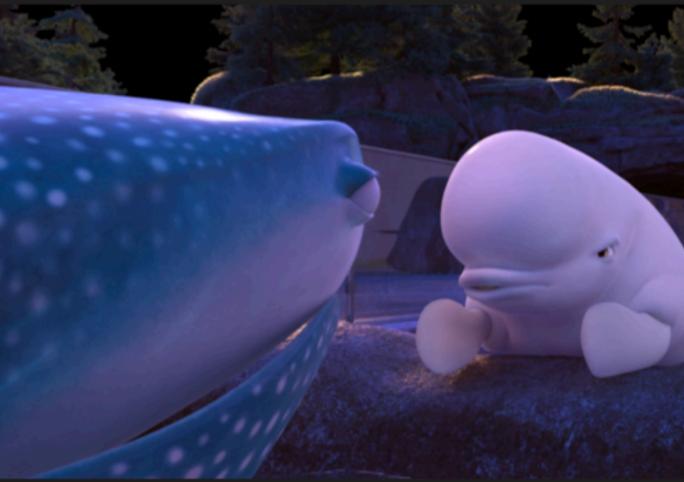


- albedo is factored out to allow large range kernels $\tilde{c}_{diffuse} = c_{diffuse} \oslash (f_{albedo} + \epsilon)$

$$og(1 + c_{specular})$$

Training Dataset: 600 frames





8-hidden layers used with 100 kernels of 5x5 in each layer for each network

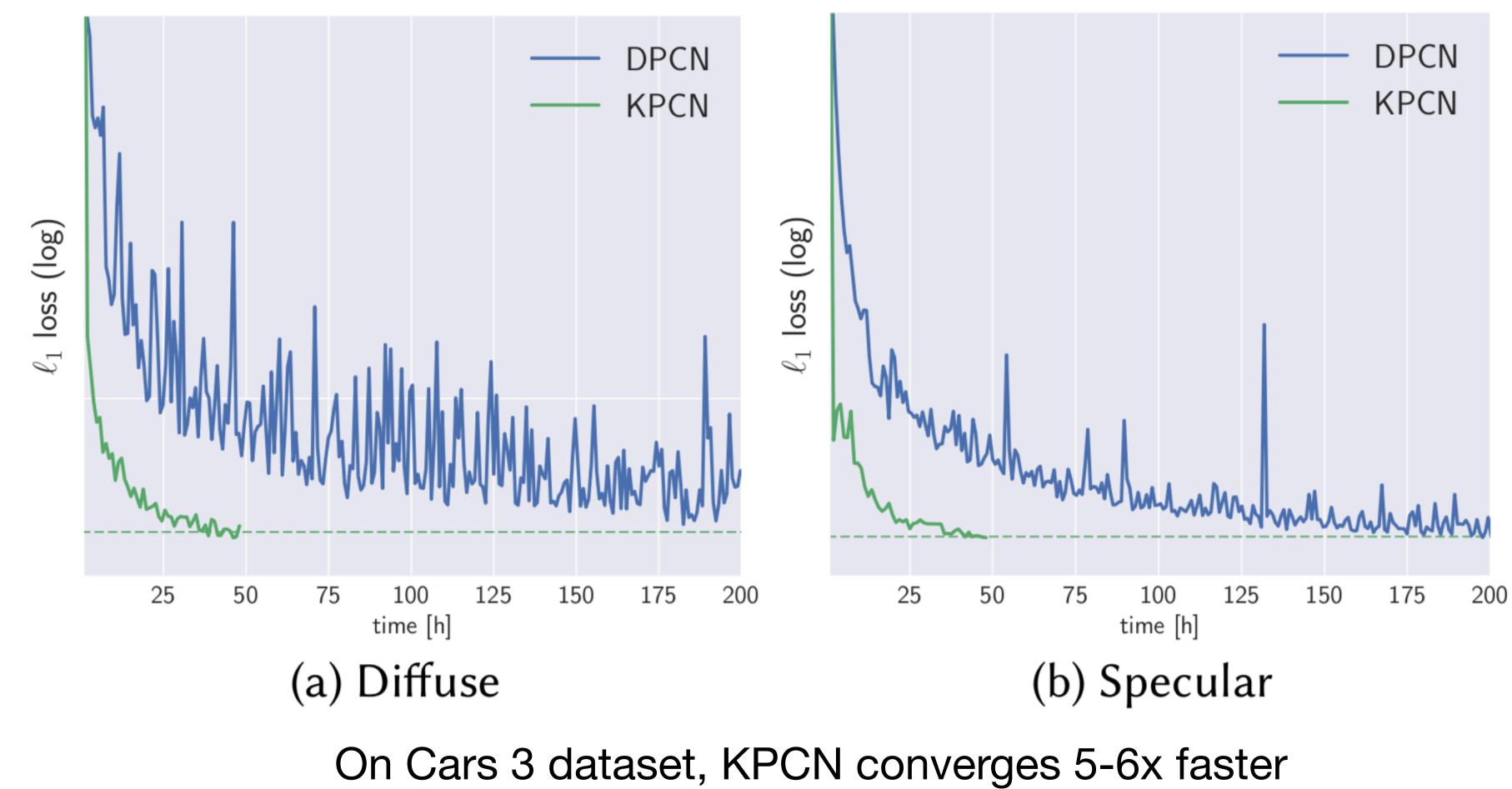
For KPCN (kernel-predicting network), output kernel size used = 21

Weights for 128 app and 32 spp networks were initialized using Xavier method

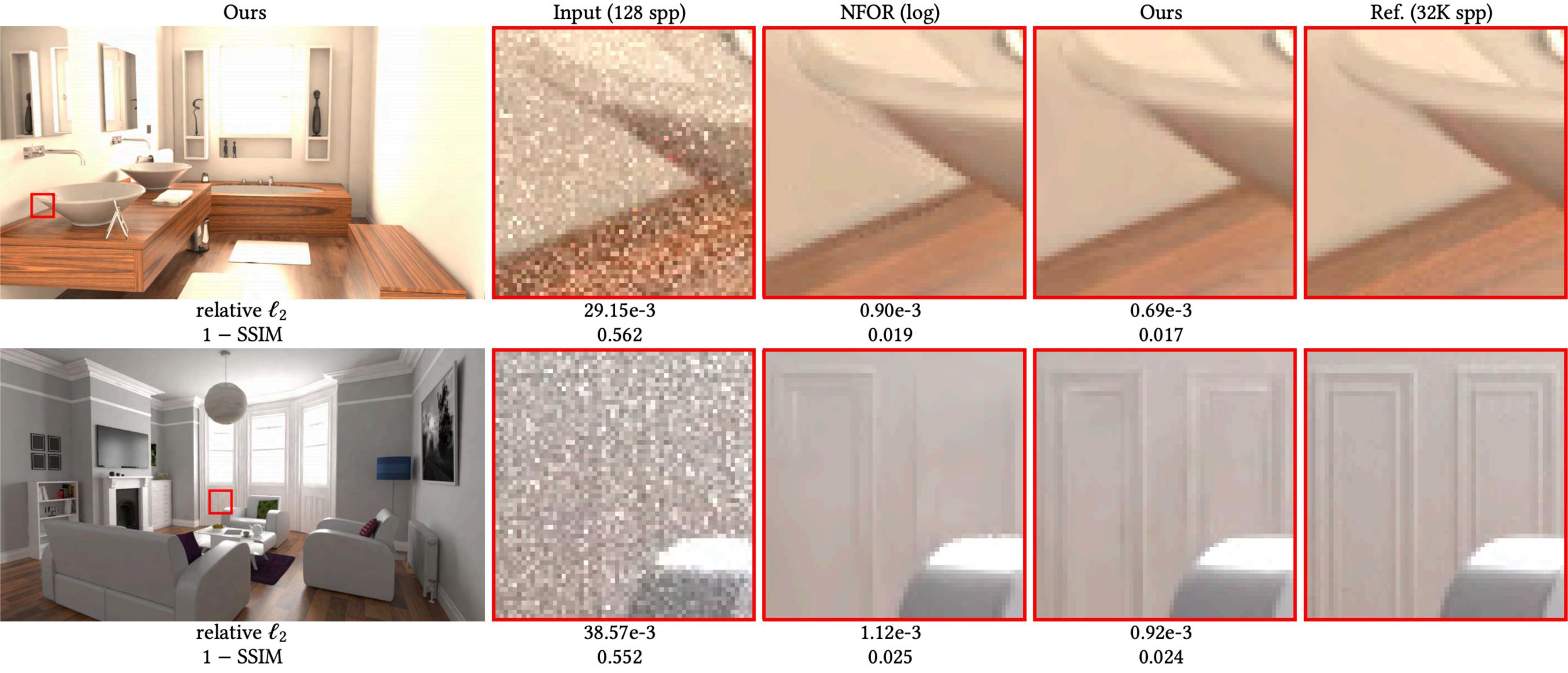
Diffuse and specular components were independently trained with L1 loss metric

Training

Learning rate of DPCN vs. KPCN



Realistic Image Synthesis SS2019

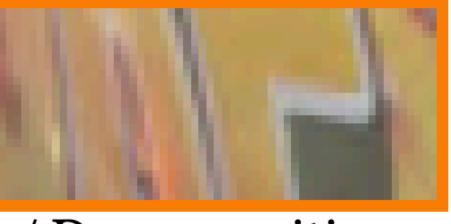


47

NFOR (log)

Realistic Image Synthesis SS2019

Input (32 spp)



w/o Decomposition, w/o Albedo divide

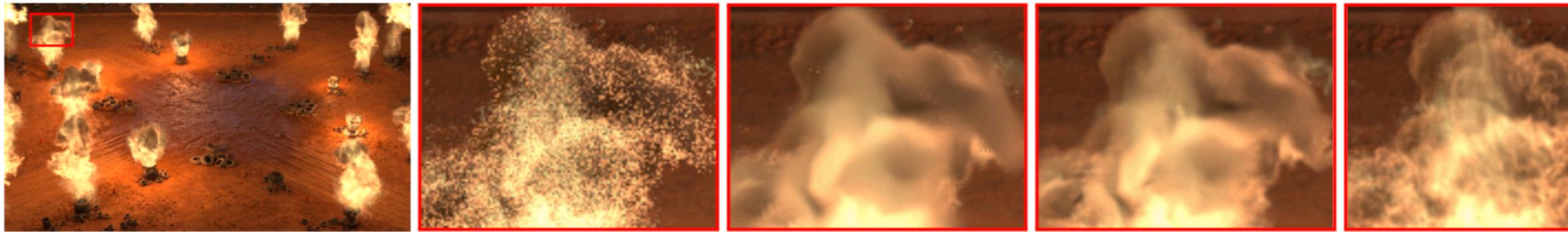
w/ Decomposition, w/o Albedo divide

Realistic Image Synthesis SS2019

w/o Decomposition, w/ Albedo divide

w/ Decomposition, w/ Albedo divide

Ref. (2K spp)



Ours

Input (32 spp)

Ours

Input (32 spp)

Realistic Image Synthesis SS2019

NFOR (log)

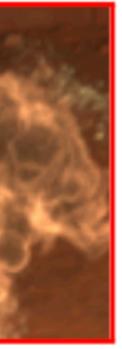
Ours

. . .

Ours

Ref. (1K spp)

Also works on Piper short movie frames



Interactive Reconstruction of Monte Carlo Sequences

Realistic Image Synthesis SS2018

Chaitanya et al. [2017]

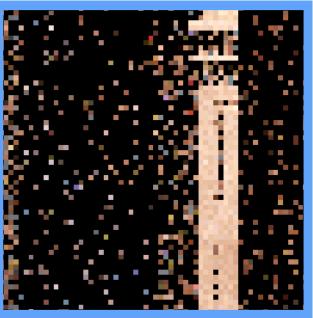
Halo 3 (Bungie)

Motivation: Interactive Reconstruction

Limited to a few rays per pixel @ 1080p @ 30Hz

Never enough to reconstruct an image

Deep learning approach for interactive graphics

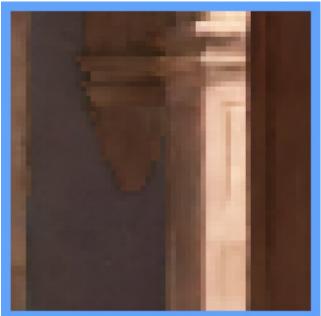


Motivation: Interactive Reconstruction

Limited to a few rays per pixel @ 1080p @ 30Hz

Never enough to reconstruct an image

Deep learning approach for interactive graphics

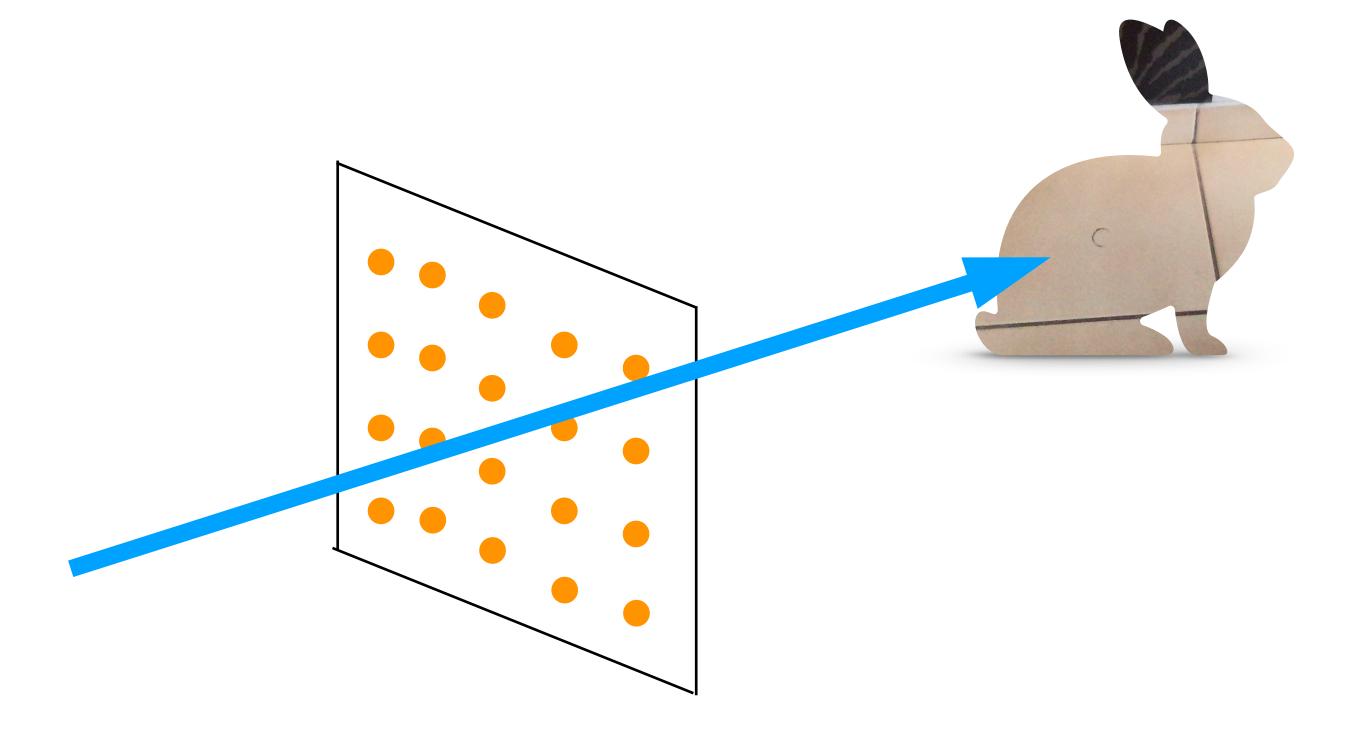


Realistic Image Synthesis SS2018

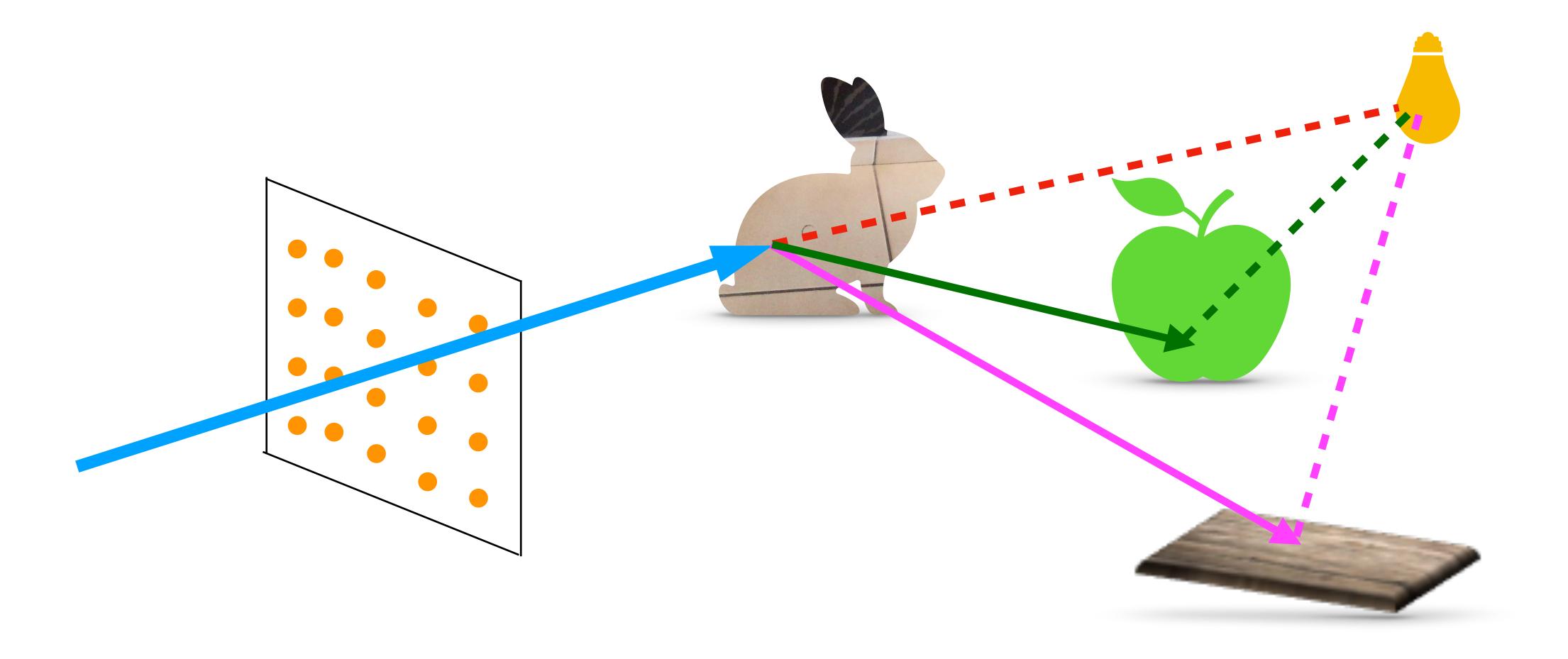
Handle generic effects:

- Soft shadows
- Diffuse and specular reflections
- Global illumination (one-bounce)
- No Motion blur or depth of field

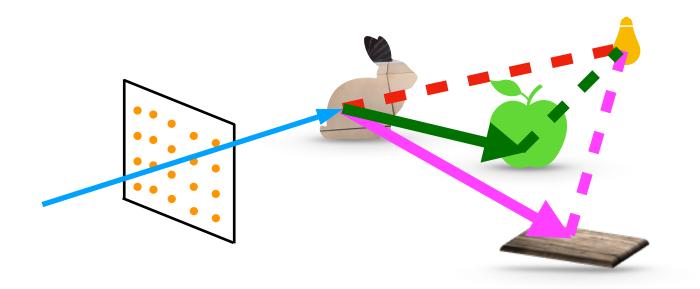
Problem Statement



System setup: Path tracing



System setup: Path tracing



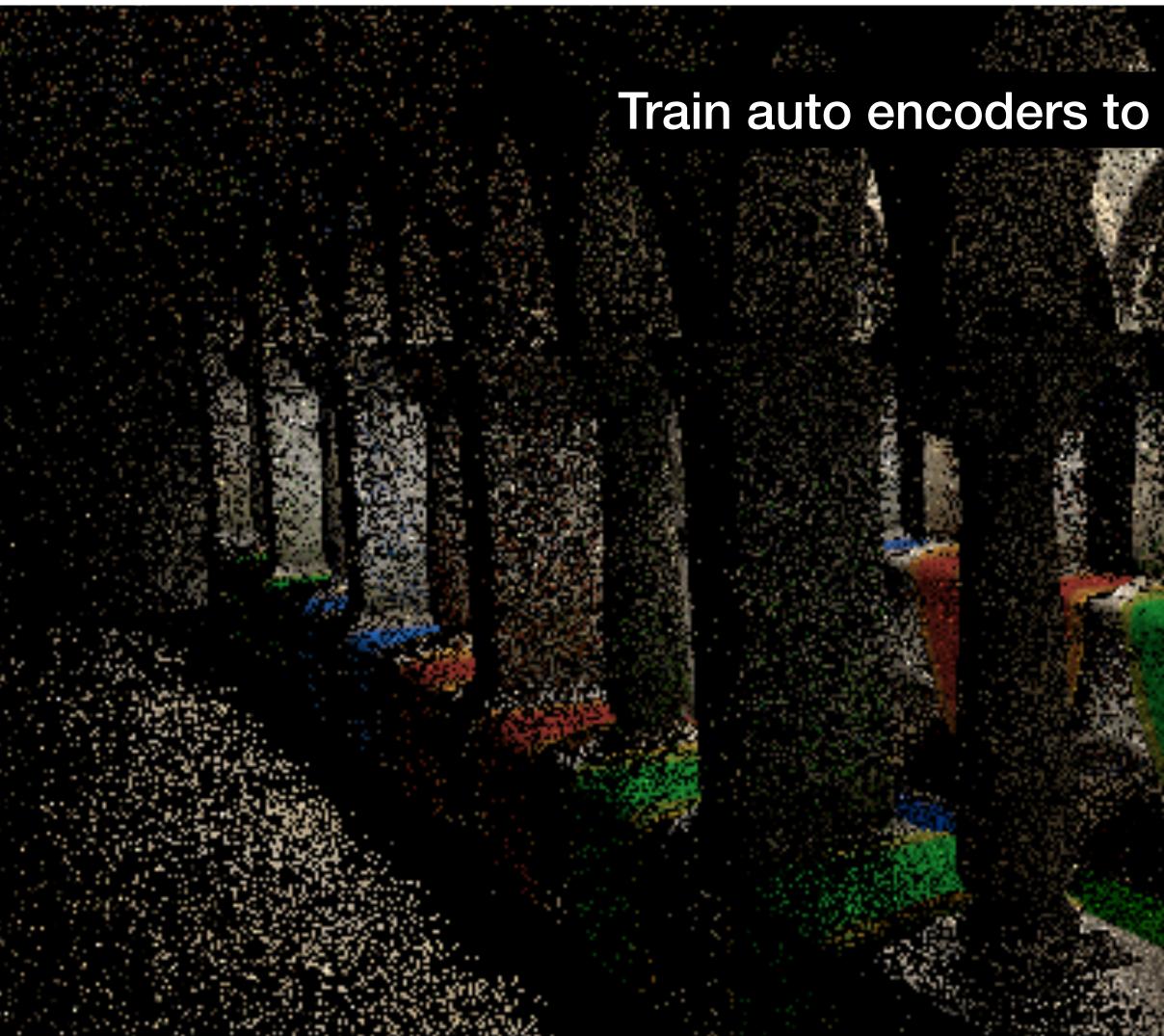
Rasterize primary hits in G-buffers

Path-tracing from the primary paths

- 1 ray for direct shadows
- 2 rays for indirect (sample + connect)

1 direct + 1 indirect path (spp)

Denoising Autoencoder (DAE)

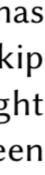


Train auto encoders to reconstruct image from 1spp

Recurrent Autoencoder [Chaitanya et al. 2017]

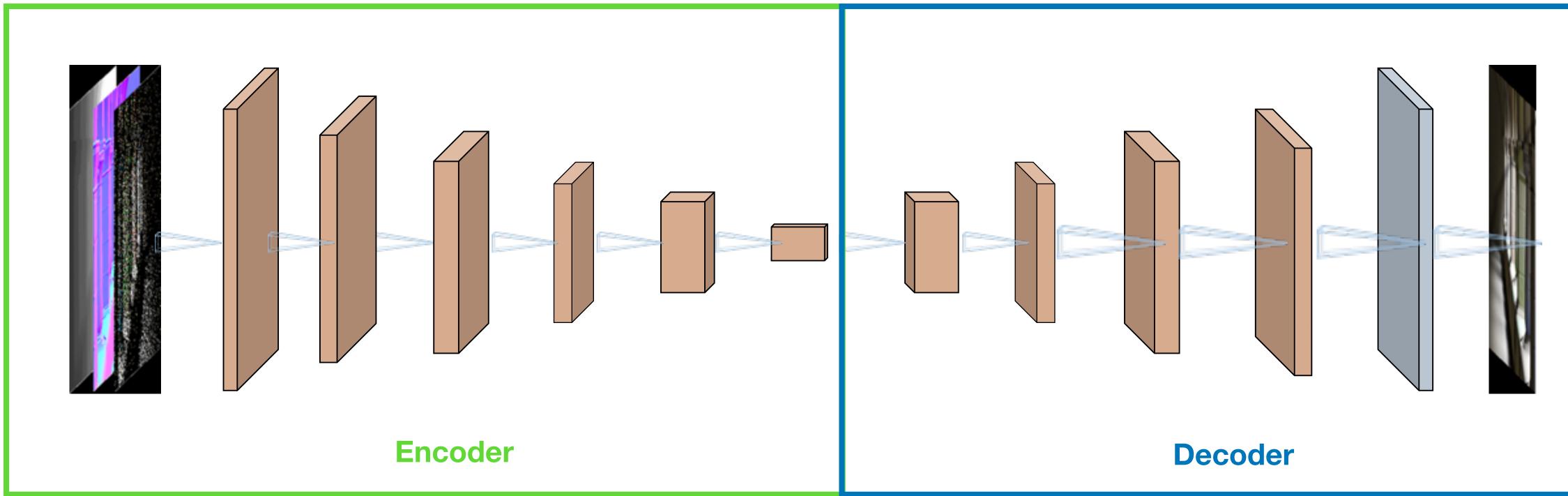


Fig. 2. Architecture of our recurrent autoencoder. The input is 7 scalar values per pixel (noisy RGB, normal vector, depth, roughness). Each encoder stage has a convolution and 2×2 max pooling. A decoder stage applies a 2×2 nearest neighbor upsampling, concatenates the per-pixel feature maps from a skip connection (the spatial resolutions agree), and applies two sets of convolution and pooling. All convolutions have a 3×3 -pixel spatial support. On the right we visualize the internal structure of the recurrent RCNN connections. I is the new input and h refers to the hidden, recurrent state that persists between animation frames.



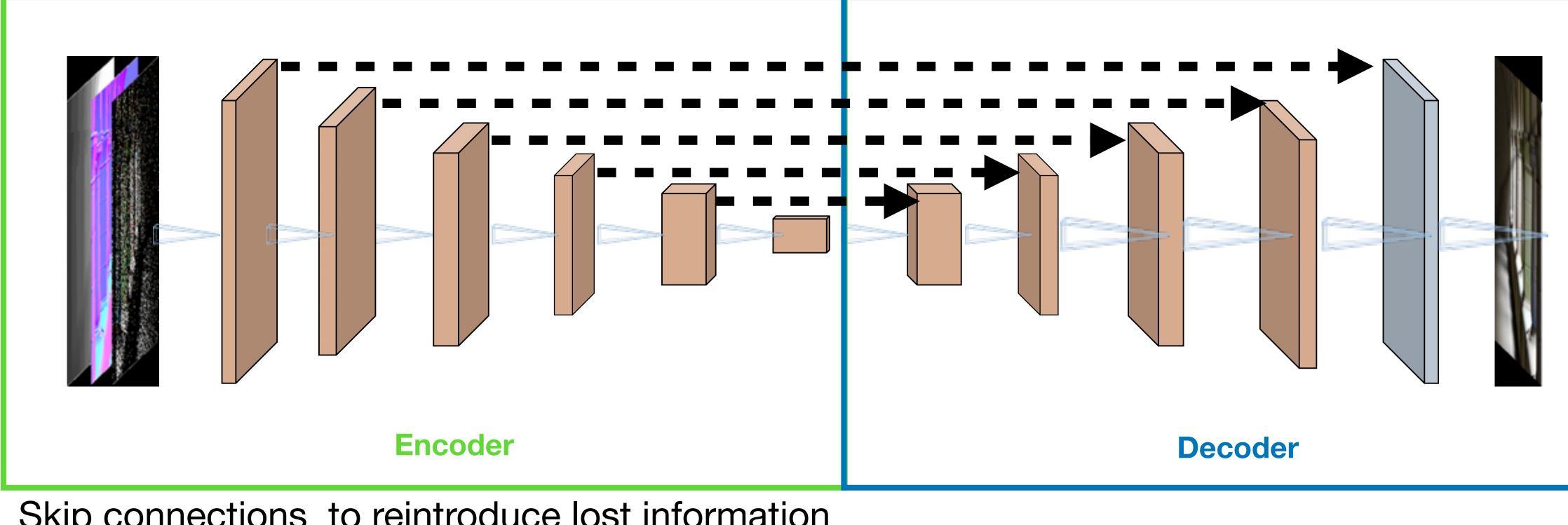
Recurrent Neural Networks

Encoder and decoder stages for dimensionality reduction



Recurrent Neural Networks

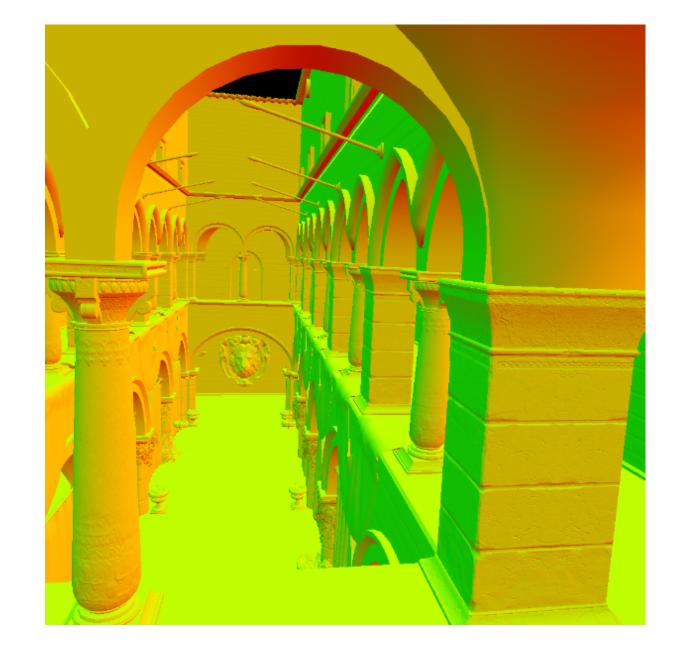
Encoder and decoder stages for dimensionality reduction



Skip connections to reintroduce lost information

62

Auxillary Features



Untextured color



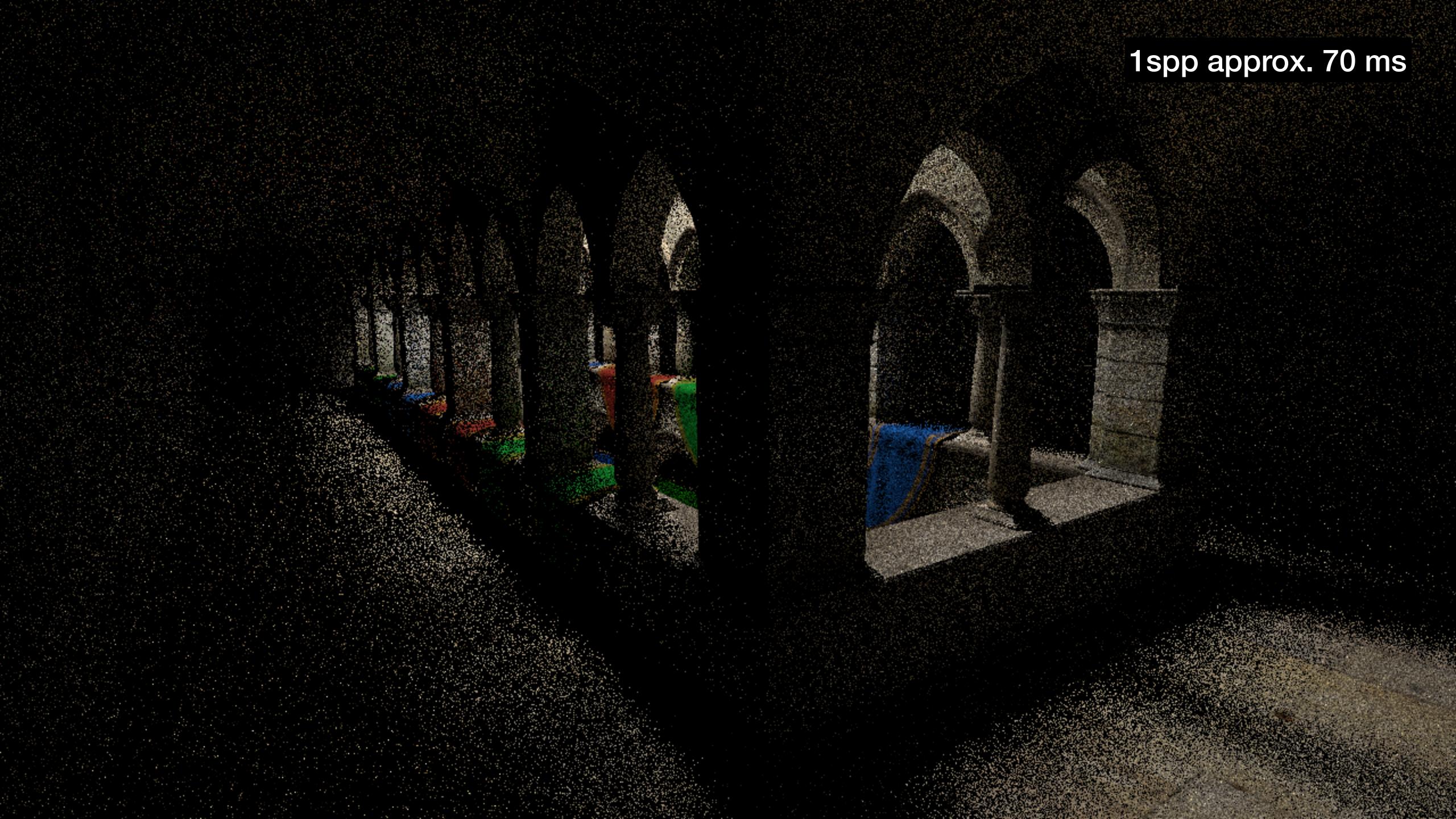
_inearize depth

Training sequences

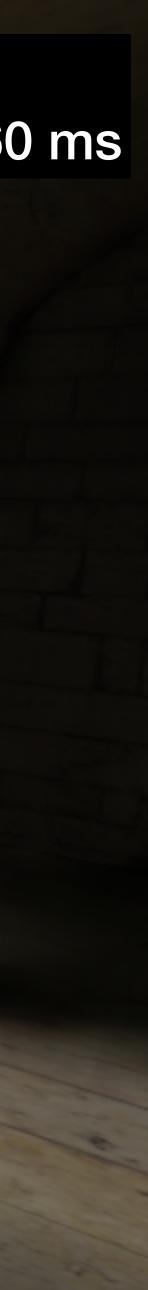
SponzaDiffuse

SponzaGlossy

Classroom



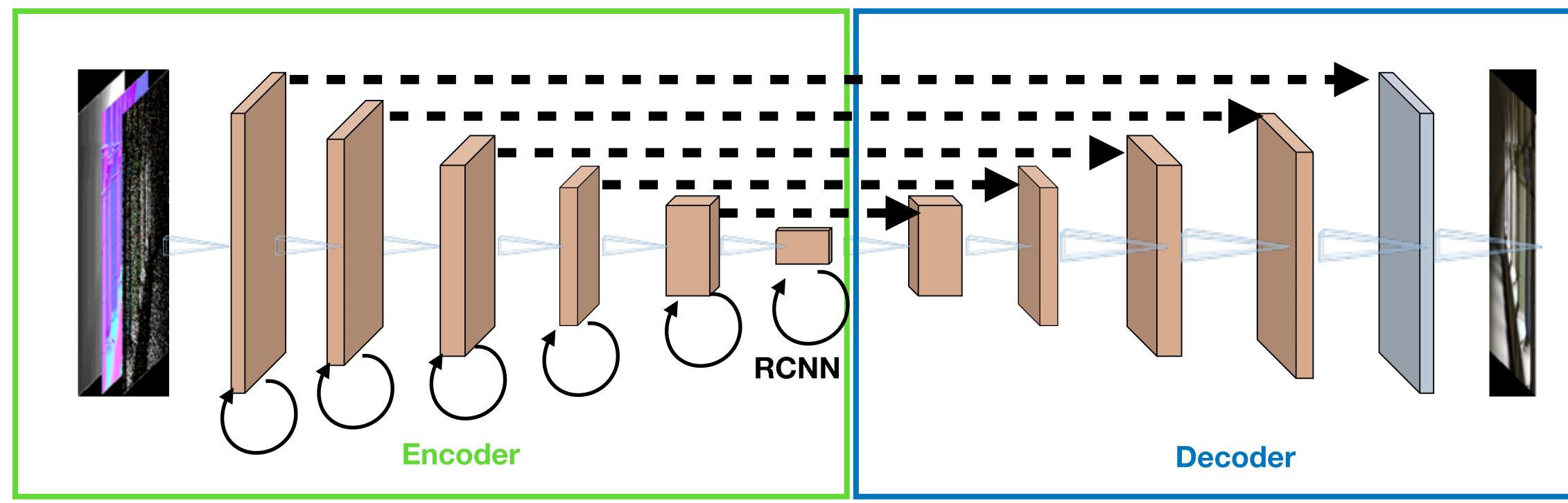
DAE 1spp approx. 70 ms + approx. 60 ms



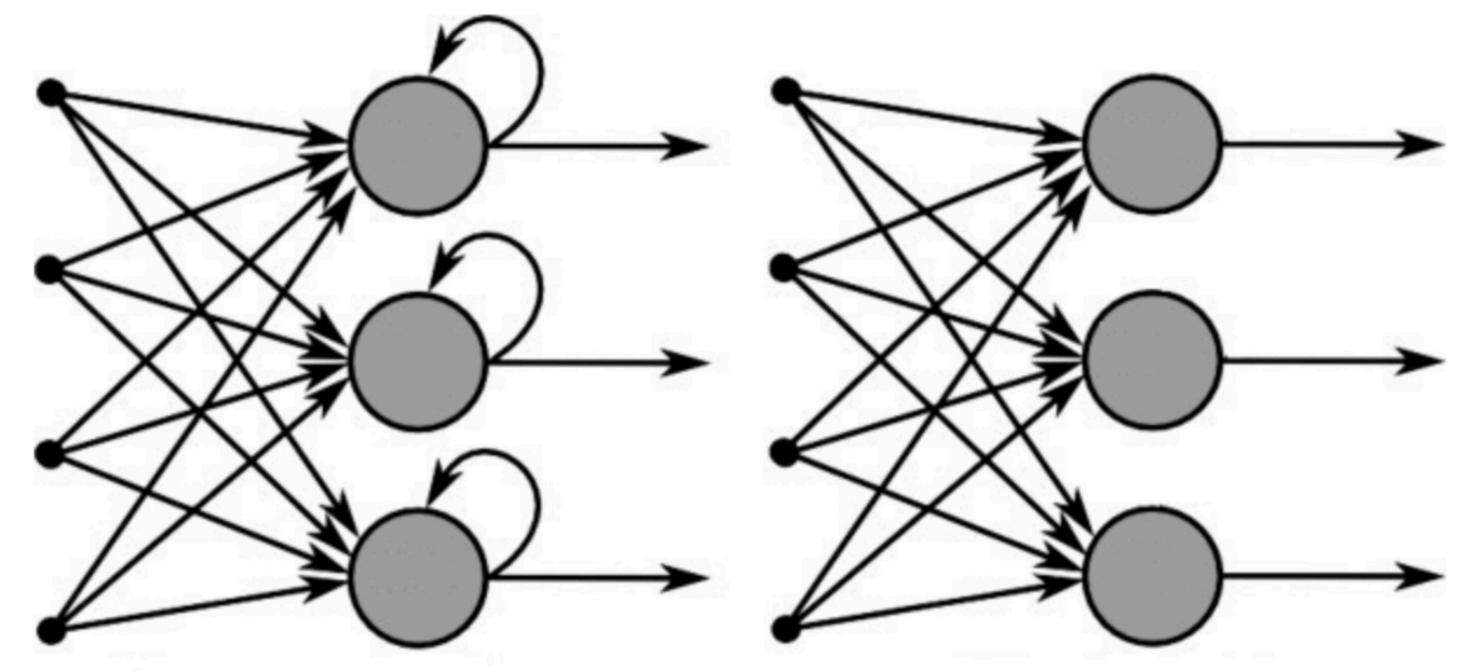
Reference 1024 spp approx. 240 ms

Recurrent Denoising Autoencoder

Feedback loops to retain important information after every encoding stage



Recurrent Neural Networks vs. Simple Feed-Forward NN

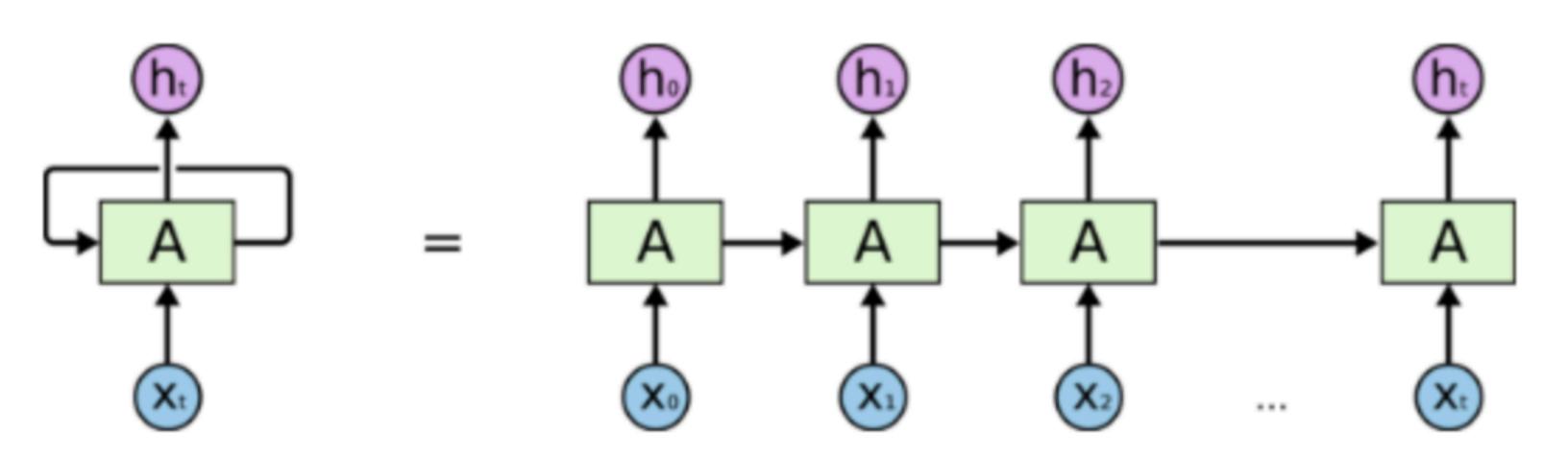


Recurrent Neural Network

Realistic Image Synthesis SS2018

Feed-Forward Neural Network

Recurrent Neural Networks



An unrolled recurrent neural network.

Realistic Image Synthesis SS2018

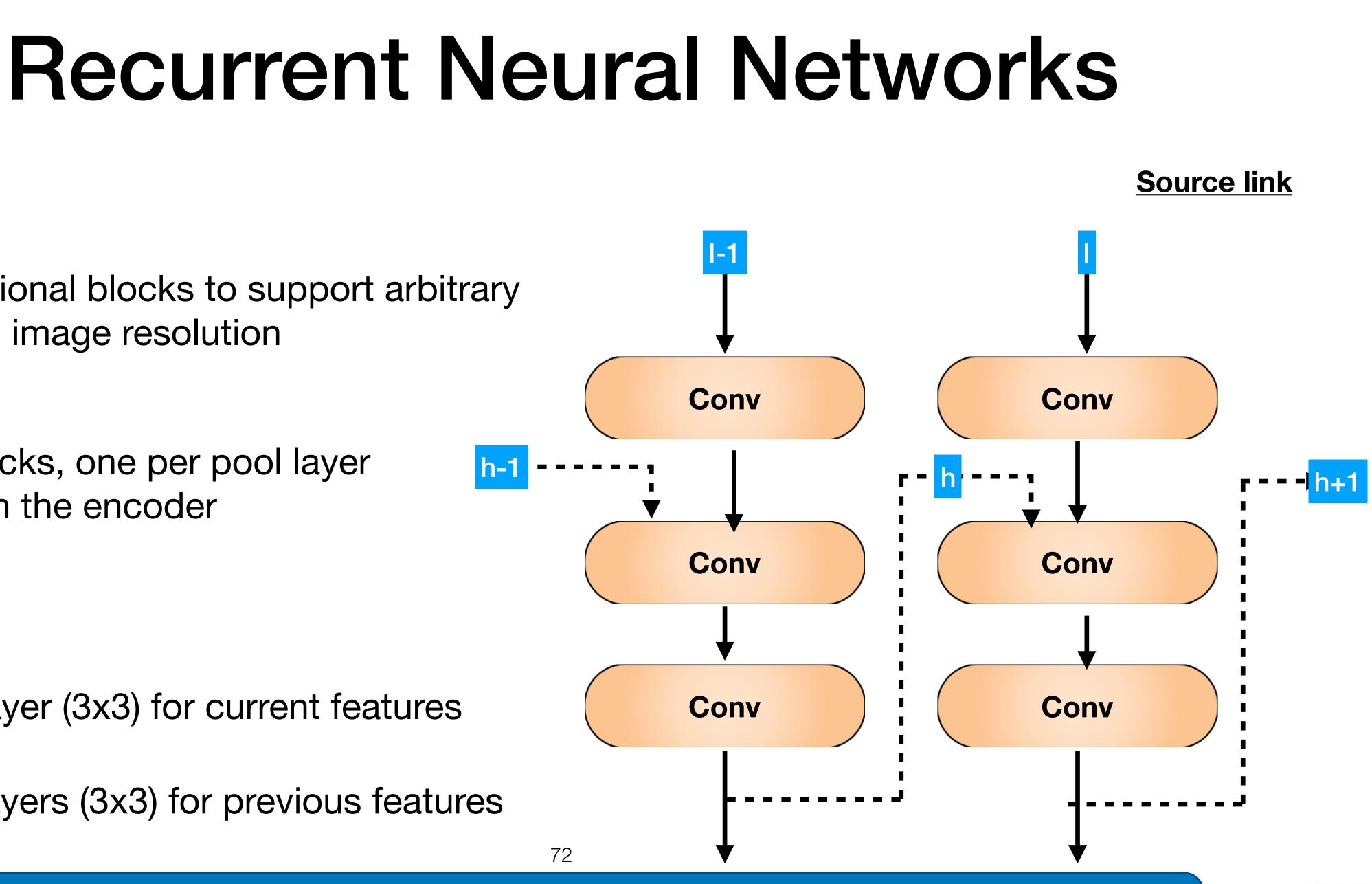
Source link

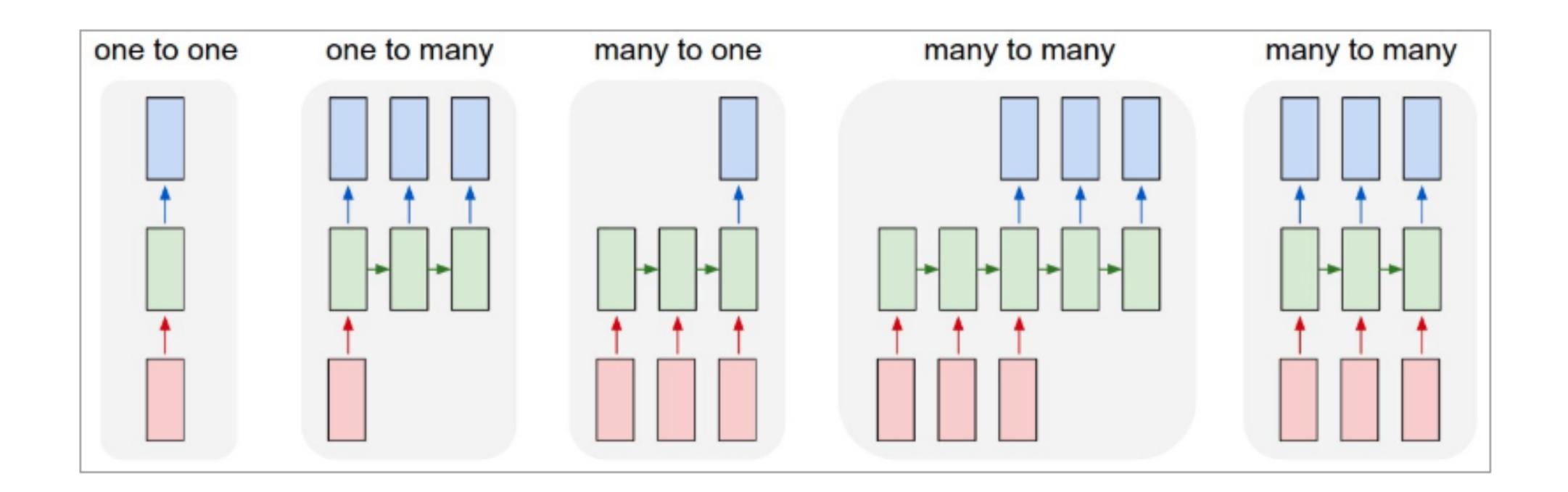
Fully convolutional blocks to support arbitrary image resolution

6 RNN blocks, one per pool layer in the encoder

Design:

- 1 conv layer (3x3) for current features
- 2 conv layers (3x3) for previous features

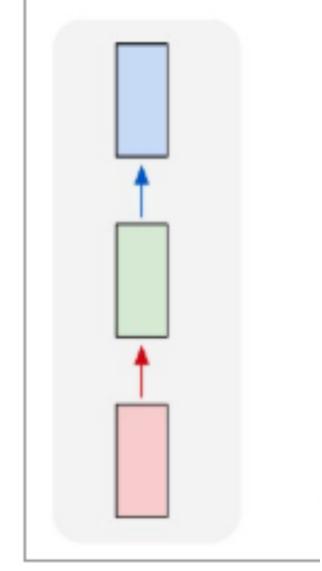




73

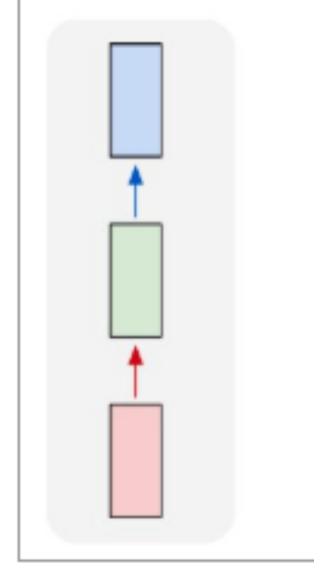
CNNs, fixed input, fixed output

one to one



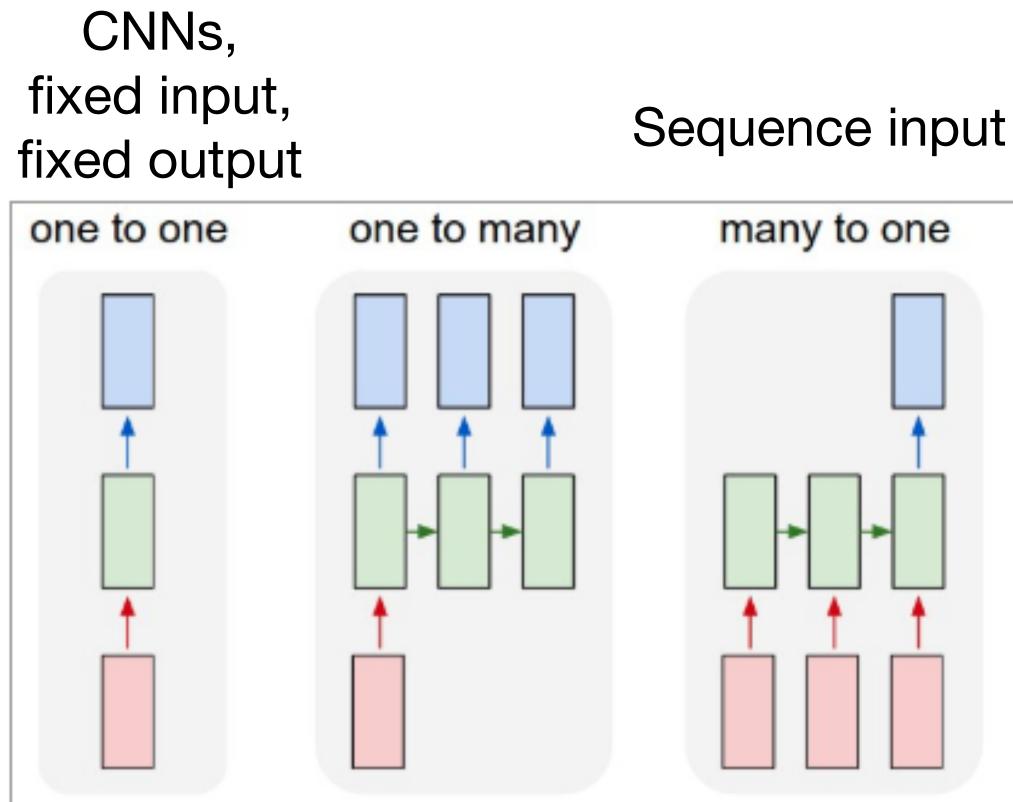
CNNs, fixed input, fixed output

one to one



e.g., image captioning takes an image as input and outputs a sentence of words

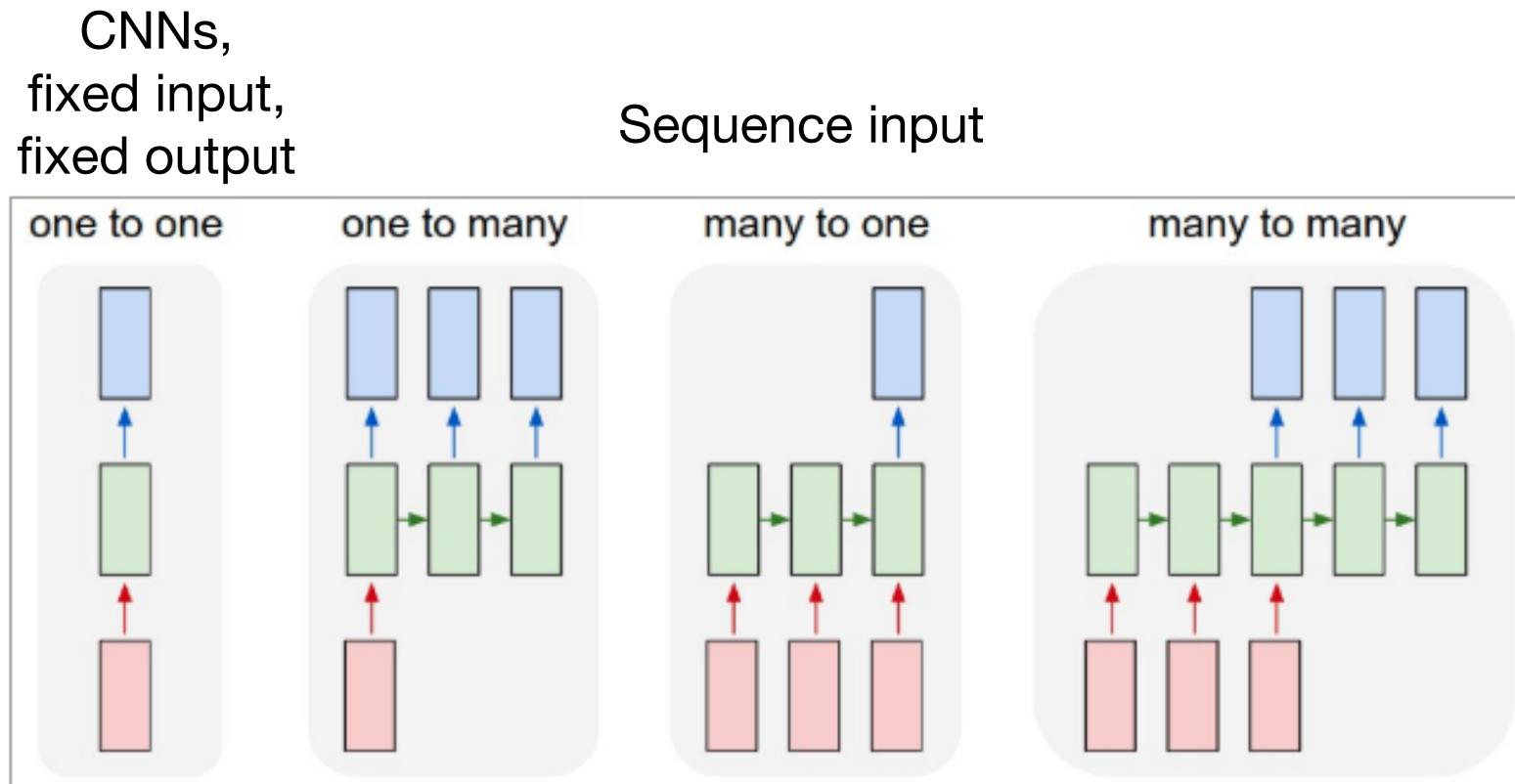
Se



Sequence output

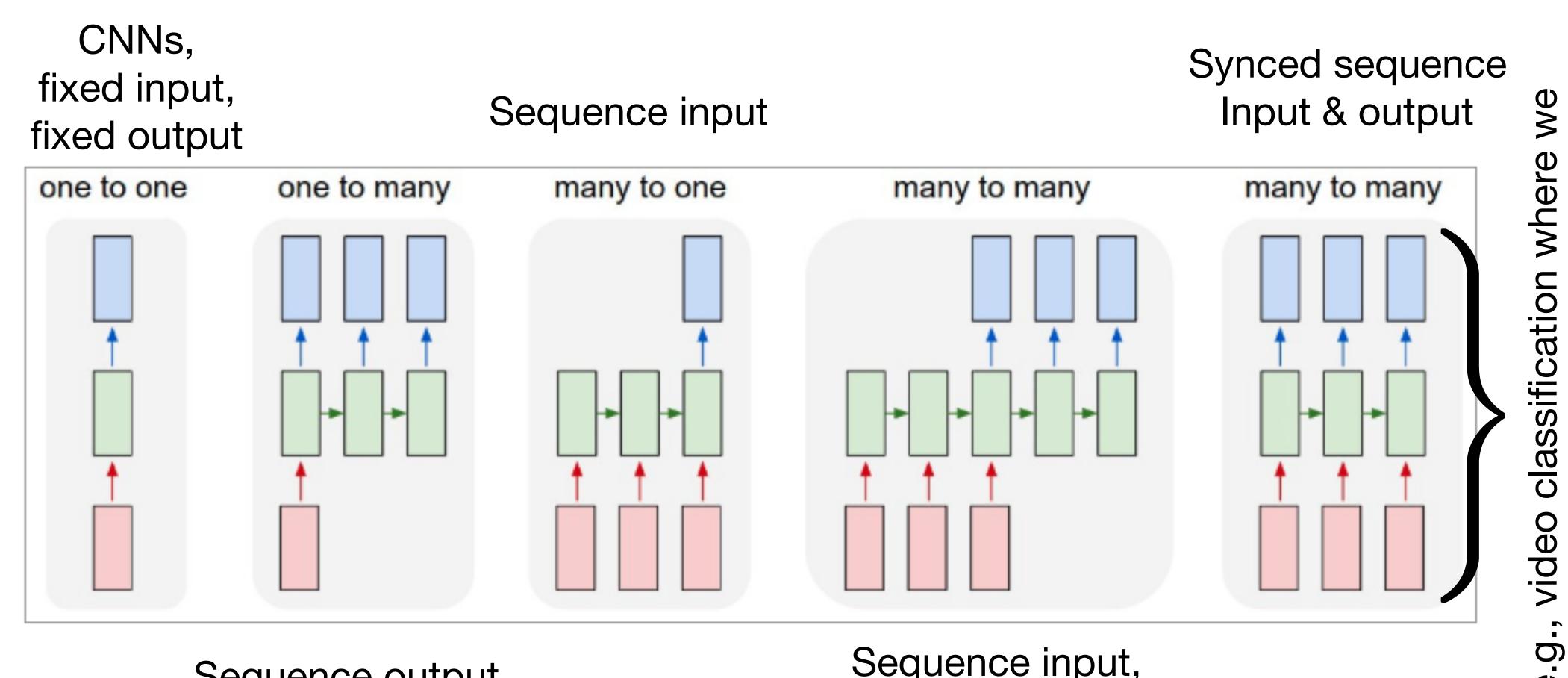
Realistic Image Synthesis SS2018

e.g., to know the sentiments of a sentence



Sequence output

Sequence input, Sequence output. e.g. Machine translation



Sequence output

Sequence input, Sequence output. e.g. Machine translation

78

want to label each frame

Ф

Input is a sequence of 7 frames

128x128 random image crop per sequence

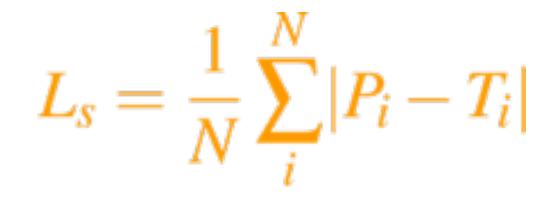
Play the sequence forward/backward

Each frame advance the camera or random seed

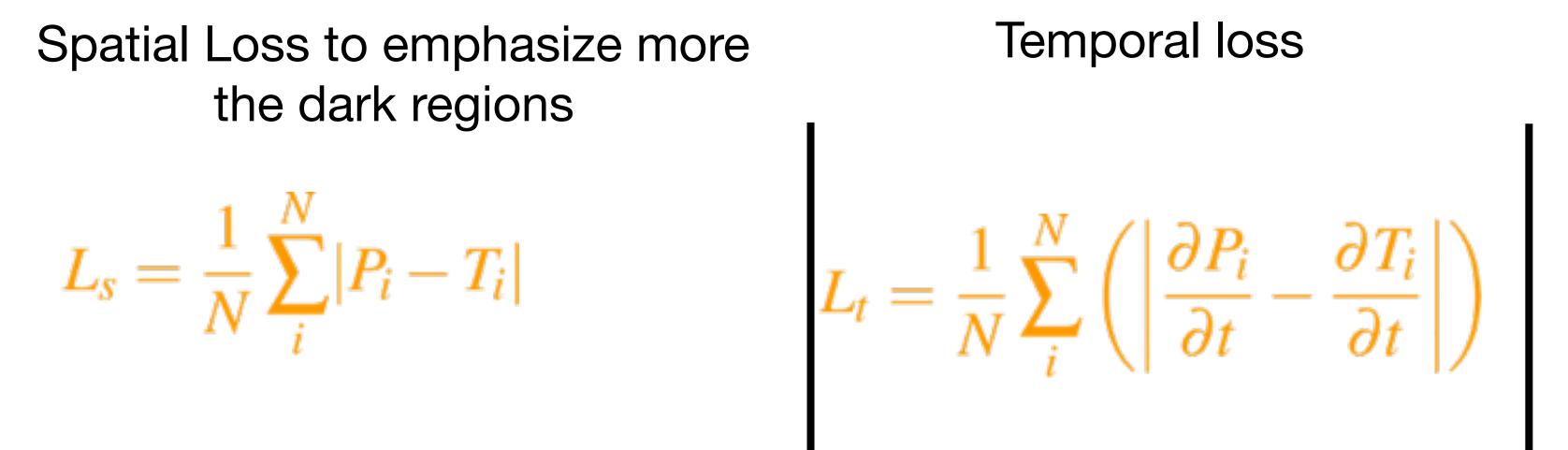
Training

79

Spatial Loss to emphasize more the dark regions

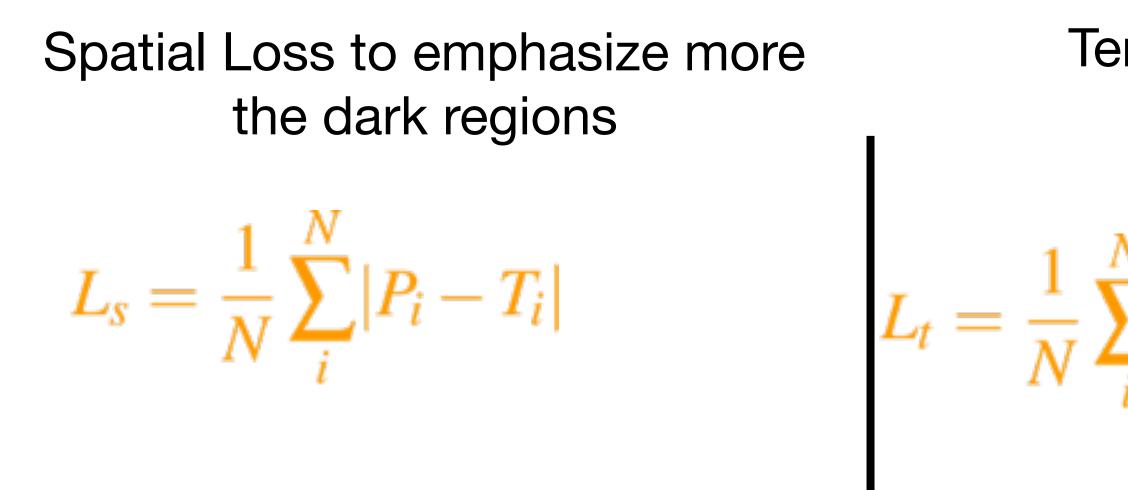


Realistic Image Synthesis SS2018



Realistic Image Synthesis SS2018

Temporal loss

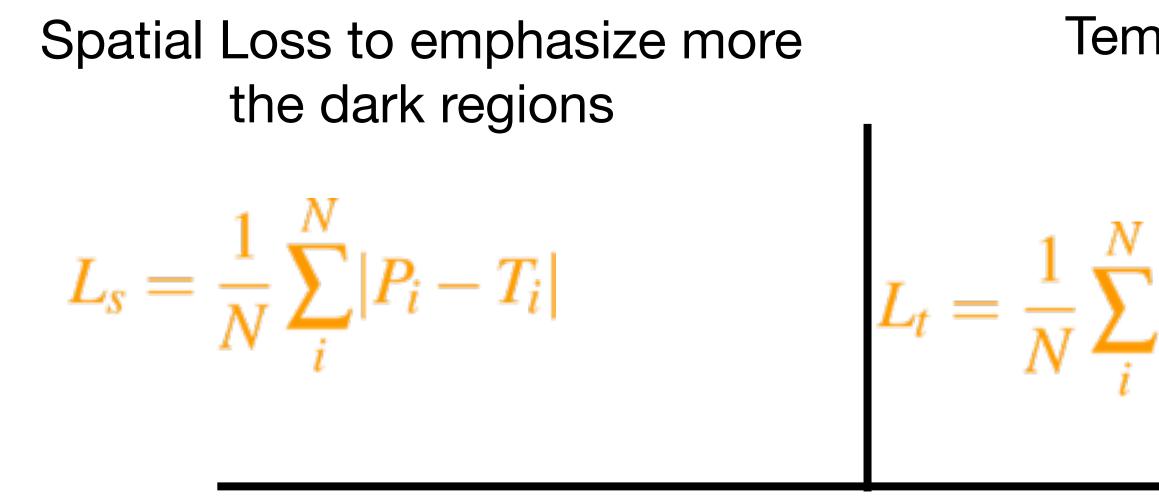


Realistic Image Synthesis SS2018

Image: symportal lossHigh frequency error norm left
for stable edgesN
$$\sum_{i} \left(\left| \frac{\partial P_i}{\partial t} - \frac{\partial T_i}{\partial t} \right| \right)$$
 $L_g = \frac{1}{N} \sum_{i}^{N} |\nabla P_i - \nabla T_i|$

82

OSS



Final Loss is a weighted averaged of above losses

Realistic Image Synthesis SS2018

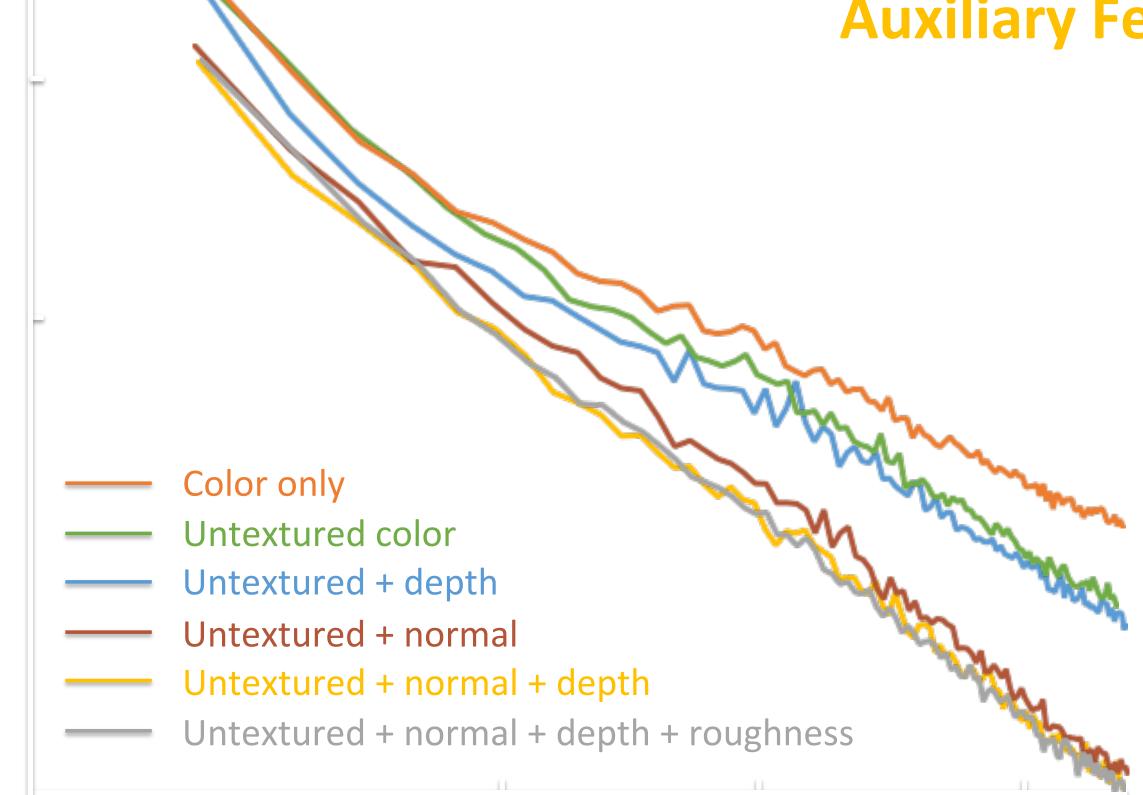
Emporal loss
High frequency error norm le for stable edges

$$L_g = \frac{1}{N} \sum_{i}^{N} |\nabla P_i - \nabla T_i|$$

$$+w_gL_g+w_tL_t$$

OSS

Training Loss depends on **Auxiliary Features**



Auxiliary Features

Epochs

Temporal Stability

Recurrent autoencoder with temporal AA

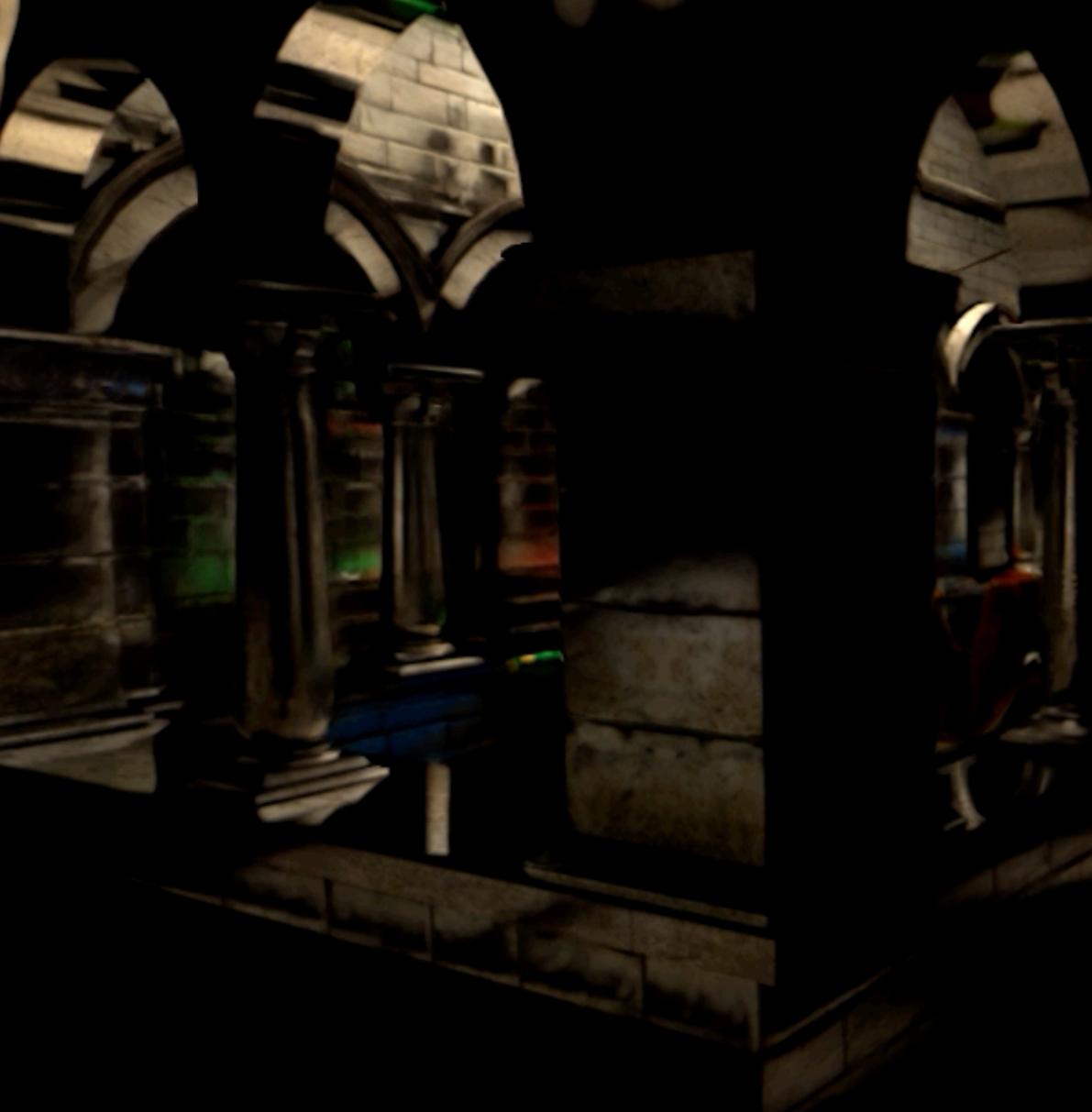
Recurrent autoencoder

Autoencoder with skips

1

1 sample/pixel input

Recurrent autoencoder



1 sample/pixel input

Introduction to CNNs

Kernel Predicting Denoising

Sample-based MC Denoising (next lecture)

Acknowledgments

Realistic Image Synthesis SS2018

Thanks to Chaitanya and colleagues for making their slides publicly available.

