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Fig. 1. Equal-time renderings from our main practical application: enhancing light selection with control variates (CVs). Our theoretical findings can be used
to enhance prior, empirically motivated CVs [Vévoda et al. 2018], providing strong error guarantees and achieving significant speed-ups.

Monte Carlo rendering makes heavy use of mixture sampling and multiple
importance sampling (MIS). Previous work has shown that control variates
can be used to make such mixtures more efficient and more robust. However,
the existing approaches failed to yield practical applications, chiefly because
their underlying theory is based on the unrealistic assumption that a single
mixture is optimized for a single integral. This is in stark contrast with
rendering reality, where millions of integrals are computed—one per pixel—
and each is infinitely recursive. We adapt and extend the theory introduced
by previous work to tackle the challenges of real-world rendering applica-
tions. We achieve robust mixture sampling and (approximately) optimal MIS
weighting for common applications such as light selection, BSDF sampling,
and path guiding.
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1 INTRODUCTION
Efficient Monte Carlo rendering requires good importance sampling.
Achieving that goal with a single sample distribution is all but im-
possible, hence combinations through mixture sampling or multiple
importance sampling (MIS) [Veach and Guibas 1995b] are the norm.
But many challenges lie on the path to an effective combined

algorithm. How should the individual densities be designed [Karlík
et al. 2019]? How should the sampling ratios be chosen for a mixture
model [Sbert et al. 2019; Pajot et al. 2010; Lu et al. 2013]? How should
the budget be allocated for an MIS combination [Grittmann et al.
2022], and how should the MIS weights be chosen [Kondapaneni
et al. 2019; Grittmann et al. 2019]?
Practical performance of a mixture or MIS combination can be

very poor, if these challenges have not been met. Unfortunately,
addressing all these questions is not exactly trivial. As an alternative,
previous work has demonstrated that a control variate (CV) can
be formed from the sampling techniques in a mixture, and that
doing so improves the robustness of said mixture [Owen and Zhou
2000]. Throughout this paper, we refer to that approach as controlled
mixture sampling. In rendering, that theory has only been applied
to simple, low-dimensional problems [Fan et al. 2006]. Kondapaneni
et al. [2019] have later shown that optimal MIS weights would
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encode this same CV but also did not find practical applications
beyond simple direct illumination.

In this paper, we extend the theoretical formulations of controlled
mixture sampling to enable practical applications in common ren-
dering scenarios. Specifically, we show how locally optimized, low-
dimensional CVs can be used for recursive, infinite dimensional
integrals, through spatial caching (Section 4). Then, we discuss gen-
eral scenarios common in rendering applications, where such CVs
can be beneficial (Section 5). We evaluate the practical performance
on our main application to many light rendering and also briefly
explore the potential in a path guiding setting (Sections 6 and 7).

Fig. 1 shows a sample of our results in the many lights application.
There, we consistently outperform baseline path tracing as well as
the empirically motivated CV of previous work [Vévoda et al. 2018].
Our rigorous theoretical foundation enables us to reap the same
benefits as the previous ad-hoc CV and combine them with the
advantages of optimal MIS weighting.

Code and data for this paper are at https://github.com/qingqhua/
ControlledMixtureSampling.

2 PREVIOUS WORK
Mixture sampling and MIS are the corner stones of most rendering
algorithms. Much work has been done to improve their performance
via adaptation to the scene. Control variates (CVs) are orthogonal,
and at first glance seemingly unrelated, variance reduction tech-
niques that can also be adapted to the scene for better performance.
Previous work has shown that mixtures / MIS and CVs work great
in tandem, but have neither identified the scope of potential im-
provement in rendering, nor practical applications to non-trivial
algorithms.

Mixtures and MIS. Importance sampling is essential for efficient
Monte Carlo integration and used extensively in rendering applica-
tions. As designing a single probability density function (PDF) that
works well for all possible cases is all but impossible, mixture sam-
pling and multiple importance sampling (MIS) [Veach and Guibas
1995b] are used extensively. In simple forward path tracing, mixtures
are used to sample multi-component BSDFs or to sample points on
light sources [Pharr et al. 2016]. These two techniques are then
typically combined via MIS. More elaborate algorithms introduce
additional mixture components, such as path guiding [Vorba et al.
2019], or MIS techniques, like bidirectional samplers [Veach and
Guibas 1995a; Lafortune and Willems 1993; Georgiev et al. 2012a;
Hachisuka et al. 2012; Křivánek et al. 2014]. Mixtures and MIS are
a crucial and ubiquitous component of any renderer and applying
them effectively is an important research problem.

Adaptive PDFs. Light in the real world exhibits a wide and di-
verse range of fascinating effects. While beautiful to perceive, this
complexity is the bane of efficient rendering. Designing PDFs that
capture all these effects efficiently is extremely difficult. Therefore,
much research has been done on adapting the densities to the scene
at hand. Path guiding methods, e.g., construct PDFs based on ob-
served samples to iteratively improve rendering performance for the
scene that is currently rendered [Jensen 1995; Bashford-Rogers et al.
2012; Vorba et al. 2014; Müller et al. 2017, 2018; Rath et al. 2020; Hey

and Purgathofer 2002; Reibold et al. 2018; Herholz et al. 2016, 2019;
Ruppert et al. 2020; Schüßler et al. 2022]. These methods differ in the
representations they use, the target densities they strive to learn, and
how training and sampling are done. Finding the best solution for
each of these components is still an ongoing research problem. Since
solely relying on learned PDFs can result in unbounded variance
and bias, guiding methods are generally combined with defensive
PDFs such as BSDF sampling. That combination is typically done
via mixture sampling, as MIS would incur exponential growth when
applied repeatedly along a path. Some of these methods additionally
use mixture models as their representation for the learned PDF, e.g.,
Vorba et al. [2014]; Ruppert et al. [2020]; Schüßler et al. [2022].

Adaptive sample counts. The performance of mixture sampling
depends greatly on the mixture weights, i.e., the selection proba-
bilities of each component. These, too, can be optimized on-the-fly
based on statistics from the scene [Lu et al. 2013; Müller 2019]. Pre-
vious work has successfully used the same optimizations for an
approximately optimal sample allocation for MIS [Sbert et al. 2019;
Grittmann et al. 2022]. These methods closely relate to the problem
of adaptively learning light selection probabilities [Vévoda et al.
2018; Donikian et al. 2006]: Sampling a point on a light is typically
done through a mixture, where each component covers the area of
one light. So, optimizing that probability is a special form of mixture
weight optimization.

Adaptive MIS weights. MIS and mixture sampling are closely re-
lated in that both combine a set of PDFs. But, where mixture sam-
pling randomly picks one PDF to sample from, MIS always sam-
ples from all PDFs and utilizes weighting functions to achieve an
unbiased estimate. The deterministic sampling reduces the vari-
ance [Veach 1997] and the weighting functions offer another way to
further reduce that variance. While heuristic methods can be effec-
tive [Veach and Guibas 1995b; Georgiev et al. 2012b; Grittmann et al.
2021] adaptation to the scene has also proven a promising avenue
to optimize the MIS weights [Kondapaneni et al. 2019; Grittmann
et al. 2019]. Applied to pure MIS, our CVs are equivalent to an op-
timally weighted MIS estimator [Kondapaneni et al. 2019]. Hence,
we can achieve (approximate) optimal MIS weighting in practical
applications.

Control variates. Control variates (CVs) are another variance re-
duction method that can be used on its own or combined with
(mixture / multiple) importance sampling. They operate by subtract-
ing a function with known integral from the target integrand and
then estimating only the difference. In rendering, applications for
CVs include relighting [Rousselle et al. 2016] and direct illumination
computations [Vévoda et al. 2018; Clarberg and Akenine-Möller
2008]. These utilize hand-crafted CVs for their specific applications.
Adaptive construction of CVs is also possible. Müller et al. [2020]
utilize deep learning for that and Salaün et al. [2022]; Crespo et al.
[2021] perform regression in primary space to construct an adaptive
(piecewise) polynomial CV.

CV and mixtures / MIS. Owen and Zhou [2000] showed that the
performance of mixture sampling can be improved by adapting a
CV formed by the PDFs. Their insights have been applied to ren-
dering [Fan et al. 2006], but limited to simple, low-dimensional
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problems. Kondapaneni et al. [2019] noted that the optimal MIS
weights encode the exact same CV, revealing an interesting connec-
tion between the two concepts. We extend this theory to allow local
optimization of CVs for infinite dimensional recursive integrals.

3 BACKGROUND
Images are rendered by computing a high-dimensional integral in
every pixel [Pharr et al. 2016]. For that, Monte Carlo integration is
used, i.e., the integrand 𝑓 is sampled at 𝑛 random positions 𝑥𝑘 and
the sample weights are averaged,

𝐹 =

∫
X
𝑓 (𝑥) d𝑥 ≈ ⟨𝐹 ⟩ = 1

𝑛

𝑛∑︁
𝑘=1

𝑓 (𝑥𝑘 )
𝑝 (𝑥𝑘 )

. (1)

The error in this estimate manifests as noise; its expected magnitude
is given by the variance

V [⟨𝐹 ⟩] = E
[
⟨𝐹 ⟩2

]
− 𝐹 2. (2)

The variance is low if the probability density function (PDF) 𝑝 (𝑥)
closely matches the integrand.

3.1 Mixtures and MIS
Finding a single PDF that performs well is typically not possible, but
multiple PDFs can be combined, either through mixture sampling
or via multiple importance sampling (MIS).

3.1.1 Mixture sampling. A mixture PDF 𝑝 (𝑥) = ∑
𝑖 𝑐𝑖𝑝𝑖 (𝑥) can be

sampled by randomly picking a component PDF 𝑝𝑖 with probability
𝑐𝑖 , resulting in an estimator

⟨𝐹 ⟩mix =
1
𝑛

𝑛∑︁
𝑘=1

𝑓 (𝑥𝑘 )∑
𝑖 𝑐𝑖𝑝𝑖 (𝑥𝑘 )

. (3)

3.1.2 Multiple importance sampling. MIS instead always takes 𝑛𝑖
samples from each component 𝑝𝑖 and uses a weighting function
𝑤𝑖 (𝑥) to obtain an unbiased estimator [Veach and Guibas 1995b]

⟨𝐹 ⟩MIS =
∑︁
𝑖

𝑛𝑖∑︁
𝑘=1

𝑤𝑖 (𝑥𝑖,𝑘 ) 𝑓 (𝑥𝑖,𝑘 )
𝑛𝑖𝑝𝑖 (𝑥𝑖,𝑘 )

. (4)

A provably good choice for the weighting function 𝑤𝑖 (𝑥) is the
balance heuristic [Veach and Guibas 1995b],

𝑤𝑖 (𝑥) =
𝑛𝑖𝑝𝑖 (𝑥)∑
𝑗 𝑛 𝑗𝑝 𝑗 (𝑥)

. (5)

MIS with the balance heuristic is closely related to mixture sampling:
The estimate

⟨𝐹 ⟩bal =
∑︁
𝑖

𝑛𝑖∑︁
𝑘=1

𝑓 (𝑥𝑖,𝑘 )∑
𝑗 𝑛 𝑗𝑝 𝑗 (𝑥𝑖,𝑘 )

(6)

is almost the same as a mixture estimator, except the components
are not selected at random. This determinism reduces the vari-
ance [Veach 1997] but also mandates that there are at least as many
samples as there are PDFs. That limits the utility of MIS in a recur-
sive setting or when the number of PDFs is otherwise large.

3.2 Control variates
The method of control variates (CVs) introduces a correlated func-
tion 𝜆(𝑥) with a known integral Λ =

∫
X 𝜆(𝑥) d𝑥 . The original inte-

gral is computed by adding the known Λ to the difference integral,

𝐹 = Λ + 𝐹 − Λ = Λ +
∫
X
(𝑓 (𝑥) − 𝜆(𝑥)) d𝑥 . (7)

If 𝜆(𝑥)/𝑝 (𝑥) closely correlates with 𝑓 (𝑥)/𝑝 (𝑥), then the difference
integral will be small. Consequently, the CV estimator

⟨𝐹 ⟩CV = Λ + 𝑓 (𝑥) − 𝜆(𝑥)
𝑝 (𝑥) (8)

has low variance. Zero variance is attained with maximum positive
correlation, i.e., for any 𝜆(𝑥) = 𝑓 (𝑥) + 𝐶𝑝 (𝑥), where 𝐶 ∈ R is an
arbitrary constant. The most intuitive optimum lies at 𝐶 = 0, where
the CV 𝜆(𝑥) = 𝑓 (𝑥) is the integrand itself.

3.3 Control variates and mixtures
Owen and Zhou [2000] have shown that a CV formed from the
components of a mixture PDF can achieve robust improvements over
plain mixture sampling. Specifically, they consider the estimator

⟨𝐹 ⟩mixCV =
∑︁
𝑖

𝛼𝑖 +
𝑓 (𝑥) − ∑

𝑖 𝛼𝑖𝑝𝑖 (𝑥)∑
𝑖 𝑐𝑖𝑝𝑖 (𝑥)

(9)

where the CV 𝜆(𝑥) =
∑
𝑖 𝛼𝑖𝑝𝑖 (𝑥) is a linear combination of the

mixture components with coefficients 𝛼𝑖 .

3.3.1 Optimal coefficients. The optimal coefficients minimize the
variance,

𝛼opt = argmin
𝛼
V [⟨𝐹 ⟩mixCV] . (10)

This is a convex optimization problem [Owen and Zhou 2000], so
we can solve it by first expanding the variances into covariances,

V [⟨𝐹 ⟩mixCV] = V
[
𝑓 (𝑥)
𝑝 (𝑥)

]
+
∑︁
𝑖, 𝑗

𝛼𝑖𝛼 𝑗Cov
(
𝑝𝑖 (𝑥)
𝑝 (𝑥) ,

𝑝 𝑗 (𝑥)
𝑝 (𝑥)

)
− 2

∑︁
𝑖

𝛼𝑖Cov
(
𝑓 (𝑥)
𝑝 (𝑥) ,

𝑝𝑖 (𝑥)
𝑝 (𝑥)

)
,
(11)

where we abbreviate notation by substituting 𝑝 (𝑥) =
∑
𝑖 𝑐𝑖𝑝𝑖 (𝑥).

Then, the partial derivatives,
d
d𝛼𝑖
V [⟨𝐹 ⟩mixCV] =

0 + 2
∑︁
𝑗

𝛼 𝑗Cov
(
𝑝𝑖 (𝑥)
𝑝 (𝑥) ,

𝑝 𝑗 (𝑥)
𝑝 (𝑥)

)
− 2Cov

(
𝑓 (𝑥)
𝑝 (𝑥) ,

𝑝𝑖 (𝑥)
𝑝 (𝑥)

)
,

(12)

are set to zero, yielding the system of equations∑︁
𝑗

𝛼 𝑗Cov
(
𝑝𝑖 (𝑥)
𝑝 (𝑥) ,

𝑝 𝑗 (𝑥)
𝑝 (𝑥)

)
= Cov

(
𝑓 (𝑥)
𝑝 (𝑥) ,

𝑝𝑖 (𝑥)
𝑝 (𝑥)

)
⇔

∑︁
𝑗

𝛼 𝑗

(∫
X

𝑝𝑖 (𝑥)𝑝 𝑗 (𝑥)
𝑝 (𝑥) d𝑥 − 1

)
=

(∫
X

𝑓 (𝑥)𝑝𝑖 (𝑥)
𝑝 (𝑥) d𝑥 − 𝐹

)
,
(13)

where we expanded the covariance terms into their integral defini-
tions, additionally using the fact that PDFs integrate to one. Because
the variance is convex but not strictly so, this system has infinitely
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many solutions [Kondapaneni et al. 2019]. Specifically, if 𝛼 = {𝛼𝑖 }
is optimal, then so is the shifted set

𝛼 ′ = {𝛼𝑖 + 𝑠𝑐𝑖 } (14)

for every real number 𝑠 . This is because, when substituted in the
estimator, any of these shifted coefficients simplify to the exact same
estimate. The system can be made non-singular, and thus solvable,
by imposing an additional constraint. E.g., forcing the coefficients
to sum to the integral,

∑
𝑖 𝛼𝑖 = 𝐹 , yields∑︁

𝑗

𝛼 𝑗

∫
X

𝑝𝑖 (𝑥)𝑝 𝑗 (𝑥)
𝑝 (𝑥) d𝑥 =

∫
X

𝑝𝑖 (𝑥) 𝑓 (𝑥)
𝑝 (𝑥) d𝑥 . (15)

This can be shown by adding the constraint equation to all equations
in the system (13).

3.3.2 OptimalMIS. Kondapaneni et al. [2019] note that the variance
of an MIS estimator is convex in the weighting function 𝑤𝑘 (𝑥).
After computing the optimal weights, they show that these weights
encode the exact same CV with a (deterministic) mixture computed
by Owen and Zhou [2000]. Their findings allow us to treat MIS and
mixture sampling with the same theoretical framework. Further,
we can restrict ourselves to the balance heuristic as the weighting
function, since we simultaneously achieve optimal MIS weighting.

4 ROBUST AND PRACTICAL CONTROL VARIATES
While the theoretical contributions of Kondapaneni et al. [2019];
Owen and Zhou [2000] are invaluable, their findings cannot be
applied directly to non-trivial rendering tasks. In this section, we
extend the theoretical framework such that we can optimize CV
coefficients in spatial caches. Asides from affording an efficient
practical implementation, this formulation also avoids the curse of
dimensionality: Each CV is optimized for a local, low-dimensional
integration problem: the reflected radiance at a point in the scene.
Conceptually, this is akin to path guiding methods [Vorba et al.

2019]. These subdivide the scene into spatial cells, each approxi-
mating the average incident radiance across all points within the
same cell. Analogously, we compute CV coefficients that are optimal
on average over all points in the same cell. Thereby, we can apply
quasi-optimal MIS or CVs to high-dimensional global illumination
rendering while only optimizing local, low-dimensional problems.
Our theory, introduced in the following, ensures that spatial cells
with incompatible data (e.g., boundaries) regress gracefully to the
baseline; i.e., simple mixture sampling or balance heuristic MIS.

We start by generalizing previous theory to the common scenario
where both MIS and mixture sampling are used simultaneously.
Then, we extend the derivations to enable CV coefficients shared
across many integrals (i.e., across a spatial cell). Finally, we show
that local CV coefficients can be optimized such that they minimize
the global image error.

4.1 Setup
Monte Carlo estimators in rendering applications commonly utilize
a large number of sampling techniques, combined through both
mixture sampling and MIS. A simple forward path tracer, e.g., mixes
the per-component PDFs of the BSDF and uses MIS to combine the
result with a mixture of per-light area sampling PDFs.

Formally, we consider a combination of𝑀 MIS techniques, each
taking 𝑛𝑚 samples from a mixture of𝑇𝑚 PDFs. That is, the effective
density of the estimator is

𝑝 (𝑥) =
𝑀∑︁

𝑚=1
𝑛𝑚

𝑇𝑚∑︁
𝑡=1

𝑐𝑚,𝑡𝑝𝑚,𝑡 (𝑥), (16)

where 𝑐𝑚,𝑡 is the selection probability of the 𝑡 th mixture component
in the𝑚th MIS technique.

Our goal is to improve the efficiency of that estimator via a CV

⟨𝐹 ⟩CV =
∑︁
𝑖

𝛼𝑖 +
𝑀∑︁

𝑚=1

𝑛𝑚∑︁
𝑘=1

𝑓 (𝑥𝑚,𝑘 ) −
∑
𝑖 𝛼𝑖𝜆𝑖 (𝑥𝑚,𝑘 )

𝑝 (𝑥𝑚,𝑘 )
, (17)

where the 𝜆𝑖 are linear combinations of the sampling PDFs. Con-
cretely, each

𝜆𝑖 (𝑥) =
𝑁𝑖∑︁
𝑘=1

𝑛𝑘𝑐𝑘∑𝑁𝑖

𝑘 ′=1 𝑛𝑘 ′𝑐𝑘 ′
𝑝𝑘 (𝑥) (18)

is a mixture of 𝑁𝑖 PDFs such that
∫
𝜆𝑖 (𝑥) d𝑥 = 1. The mixture

weights are proportional to the effective sample count of each PDF.
This ensures robustness, because it implies that a set of non-zero
coefficients exists such that∑

𝑖 𝛼𝑖𝜆𝑖 (𝑥)
𝑝 (𝑥) =

∑︁
𝑖

𝛼𝑖 , (19)

i.e., the CV can cancel out. Thus, the original estimator can arise
as the optimization outcome, guaranteeing that we will always
improve upon it.

The setup of Owen and Zhou [2000] arises as a special case where
only mixture sampling is used and 𝜆𝑖 = 𝑝𝑖 . The setup of Kondapa-
neni et al. [2019] arises as a special case where the CV is formed
from only the MIS techniques, i.e.,

𝜆𝑖 (𝑥) =
𝑇𝑖∑︁
𝑡=1

𝑐𝑖,𝑡𝑝𝑖,𝑡 (𝑥). (20)

We extend these to allow other partitionings of the PDFs, like clus-
tering of light sources, or grouping BSDF components into upper-
and lower-hemisphere densities.

Independently of the setup, the optimal coefficients can be found
by solving the linear system∑︁

𝑗

𝑎 𝑗

∫
𝜆 𝑗 (𝑥)𝜆𝑖 (𝑥)

𝑝 (𝑥) d𝑥 =

∫
𝑓 (𝑥)𝜆𝑖 (𝑥)

𝑝 (𝑥) d𝑥 . (21)

This can be derived by following the same steps outlined in Sec-
tion 3.3.1.

4.2 Optimal shared control variate
Computing the CV coefficients with the formulation discussed so far
requires tracking multiple samples for every integral. Unfortunately,
rendering applications compute (infinitely) many integrals. In the
image-space setting considered by previouswork [Kondapaneni et al.
2019; Fan et al. 2006; Salaün et al. 2022], we would have to compute
one integral per pixel and per path length. In the spatial setting
we aspire to, there is one integral for every point and outgoing
direction.
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relMSE 5.40e-02
MSE 3.19e-03

relMSE 4.53e-02
MSE 2.59e-03

relMSE 4.01e-02
MSE 2.63e-03

relMSE 2.43e-02
MSE 2.75e-03

relMSE 2.82e-02
MSE 1.21e-03

relMSE 1.89e-02
MSE 2.30e-03

Reference Baseline Ours Ours (relative)

Fig. 2. Optimizing the CV for absolute variance (‘Ours’) produces visible
artifacts if a spatial cell spans a high-contrast boundary. Optimizing for the
relative variance (‘Ours (relative)’) resolves the issue. Note how optimizing
the relative variance increases the mean squared error (MSE) but reduces
the relative MSE (relMSE) of the image.

We overcome this challenge by optimizing the average variance.
This seemingly simple step bears intricate challenges: not only does
the integrand 𝑓 vary but so may the PDFs—for instance, if the
surface roughness changes between integrals. A spatial cell could,
e.g., contain a textured surface with varying geometry. The points in
that cell will then have different BSDF values but also different BSDF-
based importance sampling PDFs. Mathematically, we consider a
set of estimators F = {⟨𝐹𝑘 ⟩} each computing a different integral 𝐹𝑘
with the same number of PDFs, but potentially different definitions
or mixture weights.

A single set of coefficients can be shared across all these integrals.
For that, we find the coefficients that minimize the sum of variances
of all estimators,

argmin
𝛼

∑︁
𝑘

V

[
𝑀∑︁

𝑚=1

𝑛𝑘,𝑚∑︁
𝑖=1

𝑓𝑘 (𝑥𝑘,𝑚,𝑖 ) −
∑

𝑗 𝛼 𝑗𝜆𝑘,𝑗 (𝑥𝑘,𝑚,𝑖 )
𝑝𝑘 (𝑥𝑘,𝑚,𝑖 )

]
. (22)

If the set F is continuous (e.g., for a spatial cache), the sum is
replaced by an integral.
Fortunately, this averaging does not change the nature of the

optimization problem but merely introduces an additional dimen-
sion that we sum (or integrate) over. Assuming that the ⟨𝐹𝑘 ⟩ are
mutually independent, we can apply similar steps as before to find
the optimal coefficients∑︁

𝑗

𝑎 𝑗

∑︁
𝑘

∫
𝜆𝑘,𝑗 (𝑥)𝜆𝑘,𝑖 (𝑥)

𝑝𝑘 (𝑥)
d𝑥 =

∑︁
𝑘

∫
𝑓𝑘 (𝑥)𝜆𝑘,𝑖 (𝑥)

𝑝𝑘 (𝑥)
d𝑥 . (23)

This result is convenient for practical use, as it means we can simply
accumulate the estimates across all integrals.

While no longer optimal for every single integral 𝐹𝑘 , these coeffi-
cients are optimal on average. Similarly, robust improvements over
the plain MC estimator are no longer guaranteed per-integral, but
they still hold on average. In practice, this means that care has to
be taken when deciding what integrals to average over.

4.2.1 Relative variance. Averaging over incompatible integrals can
be problematic. In practice, we found that the main challenge are
high-contrast regions: if a cache contains very bright and very dark
parts, the bright ones will dominate the coefficients, to the severe
detriment of the darker ones.

A remedy is to optimize the sum of relative variances, i.e.,

argmin
𝛼

∑︁
𝑘

V [⟨𝐹𝑘 ⟩CV]
𝐹 2
𝑘

. (24)

That way, brightness changes due to texture or illumination are
no longer problematic. This trick has been successfully used in
prior work [Rath et al. 2020, 2022; Grittmann et al. 2022]. The main
obstacle is obtaining a surrogate 𝐹𝑘 ≈ 𝐹𝑘 for the ground truth. We
follow previous work and use a denoised image from the first sample
in each pixel.

Since 𝐹𝑘 is a constant, our optimization is almost unchanged,∑︁
𝑗

𝑎 𝑗

∑︁
𝑘

∫
𝜆𝑘,𝑗 (𝑥)𝜆𝑘,𝑖 (𝑥)

𝐹 2
𝑘
𝑝𝑘 (𝑥)

d𝑥 =
∑︁
𝑘

∫
𝑓𝑘 (𝑥)𝜆𝑘,𝑖 (𝑥)
𝐹 2
𝑘
𝑝𝑘 (𝑥)

d𝑥 , (25)

with the small yet crucial difference that each sample is divided by
the surrogate ground truth.
Fig. 2 demonstrates the benefit of optimizing for the relative

variance on an example. In this scene, some spatial cells contain high-
contrast boundaries due to texture (bottom row) or illumination
(top row) changes. When optimizing for the average variance, the
CV coefficients almost exclusively favor the bright region, as it
dominates the variance. Consequently, perceived error in the darker
pixels increases. Optimizing for the relative variance distorts the
optimization in favor of the darker pixels, resolving the issue.

4.3 Color
In an RGB renderer, each pixel is composed of three integrals—one
for every color channel. In that case, we can optimize a separate
CV coefficient for each color to reap variance reduction if color
varies strongly, as done by Kondapaneni et al. [2019]. However, in a
spectral renderer, this is no longer the case. There, infinitely many
coefficients would have to be computed—one for every wavelength.
Also, it may be desirable to reduce the overhead by using a single,
monochromatic coefficient even in an RGB renderer.
For that, we can apply the same reasoning as for the spatial

sharing. By simply averaging the estimates for our linear system,
we can easily obtain coefficients that are optimal across all colors,
or coefficients that are optimal for one frequency band.

4.4 Recursive integration
Previous work has considered the idealized case of a CV formed
from the full PDFs 𝑝 (𝑥). In rendering applications, the integrals are
recursive and sampling is done incrementally. In other words, 𝑝 (𝑥) is
a high-dimensional quantity. Optimizing a CV in a high-dimensional
space is quickly limited by the curse of dimensionality [Salaün et al.
2022]. We tackle this problem by optimizing local, low-dimensional
CVs instead.

Viewed abstractly, rendering algorithms compute integrals∫
𝑓 (x) dx =

∫
𝑔(𝑥)

∫
ℎ(𝑥,𝑦)

∫
𝑖 (𝑦, 𝑧) d𝑧 d𝑦 d𝑥 (26)
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that can be separated into a prefix 𝑥 , a local point 𝑦, and a suffix 𝑧.
Namely, the path leading to the point we consider (𝑥 ), the direction
at that point (𝑦), and the path continuing in that direction to a light
source (𝑧). We consider an estimator

⟨𝐹 ⟩ = 𝑔(𝑥)
𝑝 (𝑥)

(∑︁
𝑡

𝛼𝑡 +
𝑀∑︁

𝑚=1

𝑛𝑚∑︁
𝑘=1

(
ℎ(𝑥,𝑦)𝑖 (𝑦, 𝑧)
𝑝 (𝑦 |𝑥)𝑝 (𝑧 |𝑦) −

∑
𝑡 𝛼𝑡𝜆𝑡 (𝑦 |𝑥)
𝑝 (𝑦 |𝑥)

))
(27)

that forms a local CV with coefficients optimized over all prefixes.
We show that the nested sampling can be ignored while the prefix
can be accounted for easily.
Repeating similar steps as before—i.e., expanding the variance

into covariances, taking the derivatives, and setting them to zero—
we obtain the linear system∑︁

𝑗

𝛼 𝑗

(∫
𝑔2 (𝑥)
𝑝 (𝑥)

𝜆𝑖 (𝑦 |𝑥)𝜆 𝑗 (𝑦 |𝑥)
𝑝 (𝑦 |𝑥) −

∫
𝑔2 (𝑥)
𝑝 (𝑥) d𝑥

)
=∫

𝑔2 (𝑥)
𝑝 (𝑥)

ℎ(𝑥,𝑦)𝐼 (𝑦)𝜆𝑖 (𝑦 |𝑥)
𝑝 (𝑦 |𝑥) −

∫
𝑔2 (𝑥)
𝑝 (𝑥) ℎ(𝑥,𝑦)𝐼 (𝑦)

(28)

We can simplify this solution further by shifting the system to com-
pute a different optimum along the line of infinitely many optima,∑︁

𝑗

𝛼 𝑗

∫
𝑔2 (𝑥)
𝑝 (𝑥)

∫
𝜆𝑖 (𝑦 |𝑥)𝜆 𝑗 (𝑦 |𝑥)

𝑝 (𝑦 |𝑥) d𝑦 d𝑥

=

∫
𝑔2 (𝑥)
𝑝 (𝑥)

∫
𝜆𝑖 (𝑦 |𝑥)ℎ(𝑥,𝑦)𝐼 (𝑦)

𝑝 (𝑦 |𝑥) d𝑦 d𝑥 .

(29)

Appendix A proves that this system yields optimal coefficients.
Note that the variance of the nested estimator is irrelevant as only
the expectation 𝐼 (𝑦) =

∫
𝑖 (𝑧 |𝑦) d𝑧 affects the result. This is not

true, however, for the prefix sampling 𝑝 (𝑥). Fortunately, in practice,
the latter can be accounted for by simply multiplying the squared
throughput weight onto each sample.

5 VARIANCE-REDUCTION POTENTIAL
Optimized PDF-based CVs have been used in rendering before [Kon-
dapaneni et al. 2019; Fan et al. 2006]. Though these prior works
have reported improvements, it is not clear when, how, and why
exactly the CVs are beneficial. In this section, we present and discuss
rendering-specific scenarios where CVs offer improvements.

The rendering results in the following are produced by training a
path guiding distribution [Herholz and Dittebrandt 2022] with 100𝑘
samples and computing CV coefficients from the same set of samples.
The CV is formed from the individual mixture components of the
path guiding distribution and the BSDF. The images are rendered
by mixing path guiding with 50% BSDF sampling. In all cases, the
scene is a diffuse plane illuminated by an HDR image. Results in
more realistic settings are discussed in Section 7.

5.1 Color noise
An advantage of CVs over importance sampling is that the former
can handle color. Consider the setup shown in Fig. 3. The visible por-
tion of the environment map has roughly constant brightness, yet
the color varies between blue and green. Importance sampling can-
not eliminate this variation in color—if, e.g., a sample is taken from
the blue region, then only the blue contribution can be estimated. If

Integrand
relMSE

Mixture
0.28 (1.00×)

PDF

Monochrome CV
0.26 (0.93×)

CV

RGB CV
0.09 (0.32×)

CV

Fig. 3. Controlled mixture sampling can reduce color noise. Here, a diffuse
plane is illuminated by an HDR with strong color differences, as shown
on the left. A mixture-based path guiding method and BSDF sampling are
combined to estimate the irradiance. The plain mixture has strong color
noise; applying a monochromatic CV provides minor noise reduction, and a
per-color CV can reduce the error threefold.
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𝑓 (𝑥)

Integrand PDFs

MIS 0.016

Mixture 1.69

Mixture + CV 0.033

MIS 0.0

Mixture 3.64

Mixture + CV 0.0

Fig. 4. 1D examples for signed integration problems. In an idealized case
(first row) using perfect PDFs, both, MIS and mixture sampling with CVs
yield zero variance. If the integrand is not matched perfectly (bottom row),
mixture sampling with a CV can still achieve almost the same variance as
MIS.

the CV coefficients are optimized per color channel, contribution
from all colors is always included in the estimate. In this extreme
case, variance is reduced threefold in that case. In contrast, if a
monochrome CV is employed, only minor speed-ups of 7% can be
achieved.

5.2 Positivisation
Most integrands in rendering are positive, though there are excep-
tions; e.g., differentiable rendering. Via pure importance sampling,
it is impossible to remove the variance due to the sign changes.
As a remedy, antithetic sampling [Zeltner et al. 2021] or positivisa-
tion [Owen and Zhou 2000] can be used. That is, instead of taking
a single sample, two (or more) samples are taken: one from the
positive part 𝑝+ (𝑥) and one from the negative part 𝑝− (𝑥). Fig. 4
illustrates this concept on a simple sine curve.

Positivisation / antithetic sampling can be thought of as forming
an MIS estimator from the positive and negative parts, instead of a
simple mixture PDF [Owen and Zhou 2000]. Therefore, this scheme
shares the same drawback as MIS: recursive application is expen-
sive. Previous work [Zeltner et al. 2021] have ameliorated the issue
through path replay [Vicini et al. 2021]. That makes the overhead
linear in the path length, but does not remove it entirely and comes
with its own challenges.
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Integrand
relMSE
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0.02 (1.00×)

PDF
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0.01 (0.31×)

CV
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Fig. 5. CVs can restore the zero-variance property of a mixture component,
even if that component is only rarely sampled. Here, the uniform sky is
sampled perfectly by BSDF sampling and mixing in guiding increases the
variance. A monochrome CV eases the problem by always matching the
correct average brightness, while a full-color CV achieves zero variance.

Optimized CVs could offer an alternative here. Akin to the reduc-
tion of color noise, the CV always includes contribution from both,
the negative and positive components. In the simplified example of
a sine curve, we thus achieve zero-variance with a single sample.
Testing the utility of this approach in, e.g., a differentiable renderer
is left for future work.

5.3 Low-variance and oversampling
Mixture and MIS combinations exhibit two well-known issues: they
perform poorly when one PDF is (almost) optimal [Veach and Guibas
1995b], and they often oversample unimportant regions [Karlík et al.
2019]. Including a CV can resolve or ease both problems.

5.3.1 Low-variance. Many applications combine a (close to) optimal
PDF with a suboptimal one. Often, this is due to defensive sampling:
a learned PDF may sometimes be a perfect match, but to avoid
unbounded variance and bias, it is always combined with a defensive
density. For instance, path guiding is always mixed with defensive
BSDF sampling, even if the guiding approach strives to learn the
full product with the BSDF [Herholz et al. 2016].
It is well-known that such a combination sacrifices some of the

benefits of the low-variance technique. When combined through
MIS, it is possible to restore the zero-variance outcome through
well-chosen MIS weights [Veach and Guibas 1995b; Grittmann et al.
2019; Kondapaneni et al. 2019]. This is not the case for mixture
sampling. There, the optimal technique might sometimes not be
sampled at all.

Formixture sampling, Owen and Zhou [2000] address the problem
by optimizing CVs based on the sampling PDFs. They proved that
the variance of the resulting estimator is at most 𝜎2𝑡 /𝑐𝑡 , where 𝑡 is
the best technique and 𝑐𝑡 and 𝜎2𝑡 are its selection probability and
variance, respectively. As our theory is based on theirs, we also reap
those benefits.

Fig. 5 demonstrates this on a simplified example. BSDF sampling
has zero variance in this case, but the mixture with path guiding
considerably worsens the result. The monochrome CV reduces this
error threefold, but, as it returns a grayscale approximation of the
integral for poorly sampled pixels, it cannot achieve zero variance.
Switching to a per-color CV enables us to perfectly fit the CV to the
integrand, hence yielding zero variance despite the fact that we are
using mixture sampling.

Integrand
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Mixture
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PD
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0.48 (0.67×)
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0.44 (0.62×)
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Fig. 6. CVs can combat oversampling. Here, the darker sky is oversampled
by the combination of guiding and BSDF sampling.While the sky is captured
perfectly, there is significant variance due to the sun in the plain mixture
result. The CV rectifies this by always including contributions from the sun,
as reconstructed through the path guiding PDFs.

5.3.2 Oversampling. Oversampling occurs when multiple PDFs
strive to match the entire integrand, but most only succeed in the
low-contribution regions. A common example is direct lighting from
a sun-and-sky model, as shown in Fig. 6. There, BSDF sampling
almost perfectly matches the sky but neglects the bright sun. At the
same time, guiding achieves a crude match of the entire integrand.
When combined, the darker sky will receive far too many samples.

Previous work has proposed remedies for tabulated PDFs [Karlík
et al. 2019] and iterative refinement schemes [Rath et al. 2020]. CVs
can additionally ease the oversampling problem, with or without
these enhancements.
In the example shown in Fig. 6, the optimized CV adds approxi-

mated contributions from the undersampled regions (sun and bright
parts of the sky) to every sample. At the same time, it subtracts
contribution form the oversampled darker parts of the sky. The
net result is a 40% faster rendering. Here, variance is dominated by
brightness differences due to the sun, so monochromatic coefficients
can also provide significant speed-ups.

6 IMPLEMENTATION
We assess the practical utility of our formulation by implementing
it in a guided path tracer with next event estimation. We use the
Intel® Open Path Guiding Library [Herholz and Dittebrandt 2022]
which is based on the guiding approach of Ruppert et al. [2020]. To
ease comparison, we pre-train the guiding distribution once and
use the same one for all methods.
The guiding PDF is mixed with a BSDF PDF using a mixture

weight of 0.5. Both of these PDFs are themselves mixtures. Direct
lighting is computed through an MIS combination of this mixture
with next event estimation. For the latter, we uniformly select one
light source and uniformly sample its area. If an environment map
is present, an additional sample is taken for it, using an MIS com-
pensated [Karlík et al. 2019] PDF.
To aid comparability, we disabled path guiding for our main

results in Section 7.2. The exploratory application to guiding (Sec-
tion 7.5), in turn, is done without next event estimation and hence
without the per-light control variate. We include statistics for all
techniques enabled (with guiding and per-light control variate) in
supplemental.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:8 • Hua et al.

6.1 Optimizing the CV
The CV is trained by first rendering 8 samples per pixel with plain
mixture sampling / MIS. During this training phase, we accumu-
late Monte Carlo estimates of the coefficients in the linear system
we need to solve. After this training, the systems are solved and
the remaining iterations are rendered using the optimized CV. We
average the training image with the subsequent iterations.
To compute the approximate pixel value needed to optimize the

relative error, we denoise the image rendered by the first sample
per pixel. The overhead of this denoising (around 100ms with our
denoiser) is insignificant at our render times (60s) and can be shared
with other methods that need the same surrogate reference, like
improved target functions [Rath et al. 2020] or Russian roulette [Rath
et al. 2022]. Further, in a progressive rendering setting, repeated
denoising may be performed anyway [Firmino et al. 2022]. Thus,
we do not include the denoising cost in the overhead of our method.

The coefficients for our CV are stored in a simple (sparse) regular
grid. We manually specify the resolution for each scene. We chose
that approach for simplicity; we recommend that practical applica-
tions use adaptive subdivision schemes like those common in path
guiding methods.

6.2 Handling per-light PDFs
The number of PDFs in our application is dominated by the number
of light sources. A simple means to reduce that number is clustering.
But even then, there may be thousands of clusters. Naïvely com-
puting and solving our system for this many PDFs is very costly.
Therefore, we derived a specialized solver for this case.

For that, we note that the per-light PDFs do not overlap each
other, as each one only samples one light. Hence, the inner products∫

𝑝𝑖 (𝑥)𝑝 𝑗 (𝑥)
𝑝 (𝑥) d𝑥 = 0 (30)

are zero for all 𝑖 ≠ 𝑗 . If we only used these non-overlapping PDFs,
the system would be diagonal,

𝛼𝑖

∫
𝑝2
𝑖
(𝑥)

𝑝 (𝑥) d𝑥 =

∫
𝑝𝑖 (𝑥) 𝑓 (𝑥)

𝑝 (𝑥) d𝑥 . (31)

But what if additional PDFs are present? In that case, we can still
exploit the non-overlapping nature of the many per-light PDFs. Con-
sider the setup where the CV is computed from 𝑛 non-overlapping
and𝑚 overlapping techniques. We can substitute the first 𝑛 rows of
the linear system—the ones corresponding to the non-overlapping
techniques—into the remaining𝑚 rows. That yields an𝑚×𝑚 system
for the coefficients of the overlapping techniques:

𝑚∑︁
𝑗=1

𝛼𝑛+𝑗

(
𝐴𝑛+𝑖,𝑛+𝑗 −

𝑛∑︁
𝑘=1

𝐴𝑖,𝑛+𝑘𝐴𝑘,𝑛+𝑗
𝐴𝑘,𝑘

)
= 𝐵𝑛+𝑖 −

𝑛∑︁
𝑘=1

𝐴𝑖,𝑛+𝑘𝐵𝑘
𝐴𝑘,𝑘

,

(32)
where 𝐴𝑖, 𝑗 and 𝐵𝑖 denote the matrix and vector elements, respec-
tively, of the 𝑖th row and 𝑗th column in the original system. Sub-
stituting the result into the first 𝑛 equations provides us with the
remaining coefficients,

𝛼𝑖 =
𝐵𝑖 −

∑𝑚
𝑘=1𝐴𝑖,𝑛+𝑘𝛼𝑛+𝑘
𝐴𝑖,𝑖

. (33)

The asymptotic cost of these operations is linear in the number of
lights / clusters; both, in terms of computation effort and in terms
of memory consumption.

7 EVALUATION
In this section, we discuss the practical performance of our method
applied to direct lighting computation in path tracing. We show
that considerable speed-ups can be had for full global illumination,
where the theory of Kondapaneni et al. [2019]; Owen and Zhou
[2000] is not applicable. Then, we show the benefits of our rigorous
theory over the previous, empirically motivated approach of Vévoda
et al. [2018]. We conclude with a discussion of the main weaknesses
of any learned CV approach: the overhead and the error in the
coefficient estimation.

7.1 Global illumination
An important benefit of our formulation over the original the-
ory [Owen and Zhou 2000; Kondapaneni et al. 2019] is that we
side-step the curse of dimensionality through local CV optimization.
Hence, speed-ups can be achieved for arbitrary path lengths and
full global illumination without an excessive growth in overhead.

Fig. 7 demonstrates this by comparing our results to baseline path
tracing. Each column in the figure shows the contribution of one
path length; the leftmost column shows direct lighting only, the
rightmost shows only thrice-bounced indirect illumination. While
the speed-ups are greatest for direct lighting, considerable improve-
ments can be achieved even for long indirect paths.

7.2 Comparison to Vévoda et al. [2018]
To gauge the benefit of our rigorous theory, we compare its practical
results to the ad-hoc CV of Vévoda et al. [2018]. Both methods use
the same data structure, rendering process, and number of training
samples. The CV of Vévoda et al. [2018] is formed by only the light
sampling techniques, and the coefficient of the 𝑖th light / cluster
PDF is the MIS weighted contribution of that cluster to the spatial
cell.

Vévoda et al. [2018] empirically found this CV to performwell but
did not find theoretical guarantees for its performance. Our theory
can yield these: the coefficients they used arise as a special case of
our optimization when applied only to the MIS weighted integral
of the next event estimation technique. This proves that their ad-
hoc formulation is never worse than the baseline. However, further
improvements can be had whenever BSDF sampling is beneficial.

Fig. 8 shows this on three representative cases. Despite the higher
overhead of our method, we achieve equal or better results than the
simpler formulation of Vévoda et al. [2018] in all scenes.
The benefit is greatest in the Dining Room scene. It is illumi-

nated by multiple large area lights and an HDR background, hence
BSDF sampling performs well. Including it in the CV can triple the
performance in some parts of the scene, compared to Vévoda et al.
[2018].

The RGB Sofa features a scenario where CVs are extremelyworth-
while: The RGB lamp in the corner emits many different colors but
has constant brightness. Since the surfaces are mostly diffuse and
the lights quite small, our method does not yield improvements over
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depth4depth4BaselineBaseline OursOurs

2.6e-02 (1.00x)2.6e-02 (1.00x) 2.6e-02 (1.02x)2.6e-02 (1.02x)

depth5depth5BaselineBaseline OursOurs

2.0e-02 (1.00x)2.0e-02 (1.00x) 1.9e-02 (1.02x)1.9e-02 (1.02x)

Fig. 7. Equal-time (60s) comparison per path length between ours and baseline path tracing. The numbers in parentheses are the speed-up compared to the
baseline, higher is better. We achieve consistent speed-ups for both, direct and indirect illumination. The benefit of our method is greatest if there is much
color variation (second scene) or large light sources (first scene).

Vévoda et al. [2018], but both achieve twice as fast renderings as
the baseline by reducing the color noise.
Finally, the Bathroom is a case where CVs do not offer much

benefit. The scene is illuminated by a few medium-sized area lights
and features many glossy surfaces. As shown in Fig. 7, both CV
methods can achieve small improvements in the direct illumination
component, but little in the indirect illumination. But, importantly,
due to the robustness guarantees of our theory, results are not worse
than the baseline.

7.3 Overhead and estimation error
Our theory guarantees robust and consistent improvements over the
baseline. Unfortunately, to truly ensure these guarantees in practice,
we would need perfect estimates of all required quantities. And we
would need to be able to obtain those at no extra cost. Naturally,
that is not the case in reality.
An extreme case is our variant of Veach’s iconic MIS test scene.

It features strong glossy highlights due to around 10k emissive
triangles forming the illuminating spheres. The combination of both
results in high overhead and high estimation error in the coefficients.
Both, our method and the previous ad-hoc CV fare worse than the
baseline in this challenging scenario.

7.3.1 Overhead. Table 1 compares the equal-sample and equal-time
performance of our method to assess the impact of the overhead for

the per-light control variate application. In theory, further speed-ups
of our method are possible. For instance, the RGB Sofa and Bath-
room scene yields 10% lower error in equal-sample comparisons
than the CV of Vévoda et al. [2018]. In our current implementation,
that gain is offset entirely by the overhead. Hence, reducing the cost
of our method is a worthwhile endeavor.
The overhead is due to three main sources. First, the estimates

for the linear systems must be accumulated. The exact cost of that
depends on the number of occupied spatial cells, and other scene-
dependent factors. On average, it increased render times by around
5% in our tests. Second, the linear system in each spatial cell must
be solved. The cost of that again depends on the spatial resolution
but also on the number of PDFs. We found this time to be negli-
gible, ranging from 1ms to 50ms in our tests. Third, to obtain the
PDFs of zero-contribution paths, additional ray tracing operations
are required. If a BSDF sample yields zero contribution, we must
still determine what point on the light this direction intersects to
compute all PDFs. In our scenes, this caused around 10% more ray
tracing operations.

7.3.2 Estimation error. Asides from the overhead, the practical ben-
efits are also limited by the estimation quality of the CV coefficients.
Each coefficient is computed by accumulating a large number of
Monte Carlo estimates and then solving a linear system based on
those. High variance in these estimates can result in coefficients that
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GI, Max depth 5

Dining Room

relMSE zoom-in 3.74e-02 (1.00x) 2.29e-02 (1.63x) 6.28e-03 (5.94x)

Reference Baseline Vevoda et al. Ours

relMSE full image 3.88e-02 (1.00x) 2.71e-02 (1.43x) 1.94e-02 (2.01x)

RGB Sofa

relMSE zoom-in 1.11e-02 (1.00x) 5.35e-03 (2.07x) 5.18e-03 (2.14x)

relMSE full image 9.30e-03 (1.00x) 4.17e-03 (2.23x) 4.20e-03 (2.22x)

Bathroom

relMSE zoom-in 2.72e-02 (1.00x) 2.63e-02 (1.03x) 2.67e-02 (1.02x)

relMSE full image 2.04e-02 (1.00x) 1.95e-02 (1.05x) 2.00e-02 (1.02x)

Fig. 8. Equal-time (60s) comparison in full global illumination between ours, Vévoda et al. [2018] and baseline path tracing. The numbers in parentheses are
the speed-up compared to the baseline, higher is better. Our method achieves the same or higher performance than the previous ad-hoc approach.

GI, Max depth 5

ModernHall

relMSE zoom-in 7.38e-02 (1.00x) 5.94e-02 (1.24x) 3.59e-02 (2.05x) 2.09e-02 (3.53x) 4.15e-02 (1.78x)

relMSE zoom-in 3.79e-02 (1.00x) 2.94e-02 (1.29x) 3.96e-02 (0.96x) 2.14e-02 (1.77x) 4.21e-02 (0.90x)

Reference Baseline Vevoda et al. (64) Ours (16) Ours (64) Ours (256)

relMSE full image
Equal-time spp

4.66e-02 (1.00x)
217

3.60e-02 (1.29x)
205

3.09e-02 (1.51x)
170

1.70e-02 (2.75x)
172

3.80e-02 (1.23x)
155

Fig. 9. Equal-time (60s) comparison between baseline path tracing, Vévoda et al. [2018], and ours with different grid resolutions (16, 64, and 256). The first row
of zoom-ins shows a region with an almost constant integrand, while the second row features discontinuities in illumination, material, and geometry. Large
spatial cells (e.g., 16) perform okay on the flat surface, but not in the discontinuous region. Smaller cells (e.g., 64) perform better, but if cells are too small (e.g.,
256), performance is hampered by noisy estimates for the CV coefficients and a higher computational cost.

are severely off. This is a limitation of every on-the-fly adaptation
method, like path guiding or adaptive sampling.
With our method, there are two key parameters to control the

estimation error in the coefficients: the number of training samples
and the size of the spatial cells. Naturally, good choices for these
are trade-offs between estimation error, cost, and accuracy.

Fig. 9 demonstrates the impact of different grid resolutions. The
same scene is rendered in equal-time with a 16 × 16, 64 × 64, and
256 × 256 grid. Lower resolutions mix incompatible data, finer ones
have more noise in the CV estimates and a higher computational
overhead. We found that inaccurate CV coefficients due to noise
often manifest as negative-valued outliers, like the black pixels in
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Table 1. Statistics of the speed-up and overhead (average of 10 runs). Equal-
sample comparisons use 128spp, equal-time images are rendered for 60s.

Ours vs baseline
Equal-sample Equal-time Time overhead

Dining Room 2.20× 1.90× 15.46%
RGB Sofa 2.17× 2.03× 11.72%
Bathroom 1.03× 1.01× 13.65%
Veach MIS 1.78× 1.60× 16.82%
Modern Hall 3.52× 3.28× 15.27%
Ours vs Vévoda et al.

Equal-sample Equal-time Time overhead
Dining Room 1.63× 1.41× 15.31%
RGB Sofa 1.11× 0.98× 15.42%
Bathroom 1.00× 0.92× 17.12%
Veach MIS 1.64× 1.41× 27.30%
Modern Hall 2.62× 2.32× 18.26%

Reference

Reference Balance MIS Optimal MIS Ours

relMSE 4.41e-02 (1.00x) 3.58e-02 (1.23x) 2.41e-02 (1.83x)

Fig. 10. Equal sample (8spp) comparison between balance MIS, optimal MIS,
and ours. Our theory can also be used to more robustly compute optimal
MIS weights through spatial averaging, removing the salt-and-pepper noise
exhibited by Kondapaneni et al. [2019].

“Ours 64.” Full renderings at different grid resolutions are included
in the supplemental.

7.4 Comparison to Kondapaneni et al. [2019]
When applied to only direct illumination and for a CV formed from
only the MIS techniques, our method is almost identical to the
progressive optimal MIS estimator of Kondapaneni et al. [2019].
The sole difference is that they optimize the weight / CV for each
pixel integral, while we compute coefficients that perform well on
average over multiple pixels.
Fig. 10 shows equal-sample results from the defensive sampling

application discussed by Kondapaneni et al. [2019]. Despite averag-
ing over a textured surface, our method achieves virtually identical
speed-ups as optimal MIS. Unlike the per-integral optimization, our
approach can make do with far fewer training samples, thus we do
not suffer from the salt-and-pepper noise encountered by Kondapa-
neni et al. [2019]. Furthermore, computing fewer coefficients means
lower overhead, both in terms of computation as well as memory.
Therefore, our theory also constitutes one step forward towards
practical optimal MIS weighting.

7.5 Path guiding
Our theoretical findings are general and can be applied in many
different contexts. One such example is the sampling of indirect
illumination. Our main application formed the CV for only the direct
lighting at each hit point. We have also briefly tested applying our
theory to indirect illumination sampling.

Specifically, we can form a CV from the mixture density of BSDF
components and path guiding PDFs. Our initial findings in that
context are shown in Fig. 11. There, we render a glossy box illu-
minated by a sun and sky model and a large area light. No next
event estimation is performed. Thus, path guiding is instrumental
to capture the direct illumination from the sun. At the same time,
guiding significantly worsens the quality on the glossy surfaces,
where BSDF sampling is better suited. Our CV, applied at each vertex
during the random walk, achieves noticable variance reduction in
this equal-sample test.
Unfortunately, the gains due to our CV are mostly offset by the

associated overhead in this application. Further, indirect illumina-
tion is prone to severe variance and outliers, even with path guiding.
Successfully optimizing a CV requires careful adaptation of the spa-
tial structure and handling of outliers. Further research is required
to address these challenges.

8 LIMITATIONS AND FUTURE WORK
The main limitations of our method regard the implementation and
the overhead. Beyond improving these, future work could look into
applications to bidirectional rendering, or jointly optimizing the CV
along with the guiding target functions, the mixture weights, and
the Russian roulette probabilities.

Implementation. Implementing the CV computations is challeng-
ing for two reasons. First, the PDFs of all individual components
must be obtained—provided we aim to unleash the full potential
of the CV. In existing code bases, these are not always trivial to
access (efficiently). Second, the PDFs must be computed also for
samples that have zero contribution [Kondapaneni et al. 2019]. Since
renderers often use early-exits when the contribution is zero, it can
be tedious (and costly) to obtain all these PDFs.

Overhead. These PDF computations are also a key factor in the
overhead. The remainder of the overhead is mainly due to the mem-
ory required to estimate and store the coefficients. That cost can
be amortized by sharing data structures with an existing adaptive
sampling method such as path guiding. Therefore, our CVs are
most effective when used jointly with path guiding, or learned light
selection, in a renderer with well-optimized PDF computations.

Spatial subdivision. The practical performance of our CV depends
greatly on the spatial subdivision. If cells are too large, too many
incompatible integrals are mixed and no improvements can be had.
If cells are too small, the coefficients contain too much error. In the
extreme, a far too fine subdivision can lead to artifacts akin to the
salt-and-pepper noise encountered by Kondapaneni et al. [2019].
The question of effective spatial subdivision is one we share with
path guiding methods. In that context, multiple approaches and
heuristics exist, but a truly satisfactory answer has yet to be found.
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GI Max Depth5GI Max Depth5

Baseline (1.00x)Baseline (1.00x) Ours (1.17x)Ours (1.17x)

depth2depth2

Baseline (1.00x)Baseline (1.00x) Ours (1.16x)Ours (1.16x)

depth3depth3

Baseline (1.00x)Baseline (1.00x) Ours (1.14x)Ours (1.14x)

depth4depth4

Baseline (1.00x)Baseline (1.00x) Ours (1.13x)Ours (1.13x)

depth5depth5

Baseline (1.00x)Baseline (1.00x) Ours (1.00x)Ours (1.00x)

Fig. 11. Equal-sample results from applying our local CVs to guided path tracing without next event estimation. The CV is evaluated at every bounce along
the path, hence direct and indirect illumination benefit from it. In this example, improvements can be had by optimizing the mixture sampling in the BSDF
model and by compensating for poor guiding quality on glossy surfaces.

Selectively using the CV. Because our CVs only yield improve-
ments in some cases, efficiency can be greatly improved by finding
a way to automatically disable the CVs if their variance reduction is
not worth the overhead. This could be done by additionally track-
ing efficiency estimates [Grittmann et al. 2022] using a heuristic to
approximate the overhead due to the CV. Alternatively, a simpler
approach could be to disable the CV if the computed coefficients are
close to canceling out, i.e., if they are approximately proportional to
the effective sample counts of the corresponding PDF, 𝛼𝑖 ≈ 𝑠𝑛𝑖𝑐𝑖 . It
may be feasible to design a heuristic that reliably detects this case.

Bidirectional methods and correlation. Beyond these performance
improvements, it would also be interesting to apply our theory to
bidirectional methods. A key challenge there is sample correlation:
techniques like photon mapping or splitting produce correlated
samples, for which MIS with the balance heuristic is known to fare
poorly [Jendersie and Grosch 2018; Grittmann et al. 2021]. Optimiz-
ing a CV that takes this correlation into account could be a solution
to that problem.

Target functions. The main use-case of our optimized CVs is in
conjunction with adaptive methods such as path guiding. There, it
would also be interesting to investigate what would be the optimal
target functions that a guiding implementation should learn if it is
combinedwith our CVs. Existing work on optimized target functions
for plain path guiding [Rath et al. 2020] could be a starting point
for future work in this direction.

Mixture weights and path termination. Similarly, He and Owen
[2014] showed that the variance is jointly convex in the CV co-
efficients and the mixture weights. This theory has not yet been
applied to rendering and could yield further efficiency gains. Also, a
closely related question is that of path termination. When our CVs
are used, paths that are terminated through Russian roulette return
the sum of CV coefficients instead of zero. In that context, there are
two open questions to answer: (1) What is the best average return
value for Russian roulette in a spatial cache? (2) Can we optimize
the termination probability jointly with the CV coefficients?

9 CONCLUSION
In this article, we revisit the theoretical formulations of controlled
mixture sampling and optimal MIS weighting introduced in prior
work. These previous methods are not readily applicable to most

practical problems in rendering, due to the curse of dimensionality.
We show that this obstacle can be overcome by extending the theory
to allow local, spatially shared, low dimensional control variates
that are optimized to minimize the variance of a full global illumi-
nation image. Our theoretical findings are general and, in principle,
applicable to almost any problem in rendering. The practical utility
is only limited by the overhead and implementation effort. In our
application to light selection, we achieve considerable equal-time
speed-ups over previous, empirically motivated control variates. We
can reap the benefits of PDF-based control variates and optimal MIS
weighting in practical applications with full global illumination.
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A SOLVING FOR SHIFTED COEFFICIENTS
Given two systems of equations,∑︁

𝑗

𝑎 𝑗𝐴𝑖, 𝑗 = 𝐵𝑖 and
∑︁
𝑗

𝑎′𝑗 (𝐴𝑖, 𝑗 +𝐶𝐴) = 𝐵𝑖 +𝐶𝐵 , (34)

we show that there is a constant 𝐶 such that both solutions lie on
the line of all optimal solutions, i.e.,

∃𝐶 : 𝑎 𝑗 = 𝑎′𝑗 + 𝑛 𝑗𝑐 𝑗𝐶 . (35)
We can show the above by first substituting 𝐵𝑖 ,∑︁

𝑗

𝑎 𝑗𝐴𝑖, 𝑗 =
∑︁
𝑗

𝑎′𝑗 (𝐴𝑖, 𝑗 +𝐶𝐴) −𝐶𝐵 (36)

and then substituting the desired relationship,∑︁
𝑗

𝑎′𝑗𝐴𝑖, 𝑗 +𝐶
∑︁
𝑗

𝑛 𝑗𝑐 𝑗𝐴𝑖, 𝑗 =
∑︁
𝑗

𝑎′𝑗𝐴𝑖, 𝑗 +𝐶𝐴
∑︁
𝑗

𝑎′𝑗 −𝐶𝐵 . (37)

The coefficients have the form

𝐴𝑖, 𝑗 =

∫
𝜆𝑖 (𝑥)

𝜆 𝑗 (𝑥)
𝑝 (𝑥) d𝑥 . (38)

Therefore, if our conditions to ensure robustness are fulfilled, the
weighted sum ∑︁

𝑗

𝑐 𝑗𝑛 𝑗𝐴𝑖, 𝑗 =

∫
𝜆𝑖 (𝑥) d𝑥 = 1 (39)

can be simplified to obtain

𝐶 = 𝐶𝐴

∑︁
𝑗

𝑎′𝑗 −𝐶𝐵 (40)

Proving that the constant 𝐶 exists and hence both systems yield
optimal coefficients. Thus, we can apply arbitrary constant shifts
to the LHS and RHS of any system of equations that solves our
problem.
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