= = FRIEDRICH-ALEXANDER
== = UNIVERSITAT
== "= ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT

Harald Koéstler’ Richard Membarth® Arséne Pérard-Gayot’

'Chair for System Simulation (LSS) and ?Regional Computing Center Erlangen (RRZE), Universitat Erlangen-Nirnberg

Jonas Schmitt’ Jan Eitzinger?

SGerman Research Center for Artificial Intelligence (DFKI), Universitat des Saarlandes

Unified Code Generation for the Parallel Computation of Pairwise
Interactions using Partial Evaluation

AnyDSL - A Framework for Rapid Development of
Domain-Specific Libraries

A 2N il I
AnyDSL Intermediate Representation (Thorin)

The AnyDSL Approach to Code Generation
» Uniform syntax for the static and dynamic parts of a program
» (Code generation is triggered through Partial Evaluation
» Typesafe template metaprogramming without additional syntax

Template Metaprogramming in C++ Partial Evaluation in Impala

template <int N> struct Factorial { // by supplying the @-annotation

enum{ // the compiler will evaluate this function

value = N*Factorial<N-1>::value // at every call-side where n 4is available

s fn factorial(@m: i32) -> i32 {
}; if n == 0 {1}
template <> struct Factorial<0> { else {n * factorial(n - 1)}
enum {value = 1}; }
};

Molecular Dynamics

» Simulation of the trajectories of a large number of particles based on their interactions

» The computation of short-range interactions is an important use case in many
simulations

» Most implementations employ a combination of cell decomposition and neighbor
lists

Computing Pairwise Interactions Efficiently on Modern

Architectures

» In 2013 Pall and Hess presented an adaption
of the neighbor list scheme to modern SIMD
and GPU architectures

» Particles are not treated individually but as a
cluster of N particles

» Interactions are computed between clusters

» Choosing N according to the SIMD/SIMT width
enables data parallel computation \ .

e

AN

https://www10.cs.fau.de

Kernel Generation through Partial Evaluation

The execution of a certain computation on a system of particles can be expressed as
the following higher-order function:
fn execute(particles: Particles, kernel: fn(i32, i32, i32) > () > (O;

» By partially evaluating execute with respect to its second argument, code generation
IS triggered

» All details about the target platform are hidden within its implementation

» To generate code for different platforms, different implementations must be provided

Kernel Generation on the CPU

» The AnyDSL runtime library provides functionality for automatic parallelization and
vectorization on the CPU

fn execute(particles: Particles, G@kernel: fn(i32, i32, i32) -> ()) -> () {
// Thread-parallel exzecution
parallel (get number of threads(), i, O, particles.number of clusters, |cil| {
let cluster size = get cluster size();
let begin = ci * cluster_size;
// Vectorization using RV
vectorize(cluster size, get alignment(), O, cluster size, |i| {
let pi = begin + i,
kernel(pi, ci, cluster size);
3
3

}

Kernel Generation on the GPU

» For execution on GPU hardware, the accelerator struct can be employed, which
supports CUDA, NVVM and OpenCL as backend

fn execute(particles: Particles, G@kernel: fn(i32, i32, i32) -> ()) > (O {
let acc = get_accelerator(device_id);
let grid = (particles.number of clusters * get cluster size(), 1, 1);
let block = (get cluster size(), 1, 1);
acc.exec(grid, block, |bid, bdim, gid| {

let (gidx, ,) = gid;

let (bidx, ,) = bid;

let (bdimx, ,) = bdim;

kernel (gidx(), bidx(), bdimx());
)
acc.sync();

Single-Core Performance in FLOPS/cycle

» AnyDSL: LLVM version 5.0.1 with RV for vectorization, -O3, -march=native
» MiniMD: Intel C compiler version 18 with -O3, -xHost, -qopt-zmm-usage=high (SKL)

Processor | AnyDSL MiniMD
Skylake |5.816 (AVX512) | 3.618 (AVX512)
Broadwell | 2.928 (AVX2) 1.695 (AVX2)
lvy Bridge | 2.103 (AVX) 1.034 (AVX)

Acceleration on the GPU

» CPU test platform: Intel Xeon E3-1275 v5 with four cores

» GPU test platform: NVIDIA GTX 1080, AnyDSL Backend: NVVM, Cluster size: 32
» Double-precision floating-point computations

» The generated GPU code runs around 5 times faster

Particles | AnyDSL (AVX2) | AnyDSL (GPU)
100000 1044.39 ms 194.101 ms
500000 4300.2 ms 826.627 ms
1000000| 7652.97 ms 1684.18 ms
2000000 15014.7 ms 3294.85 ms
jonas.schmitt@fau.de

